References
- Sigwart U, Puel J, Mirkovitch V, Joffre F, Kappenberger L. Intravascular stents to prevent occlusion and restenosis after transluminal angioplasty. N Engl J Med 1987;316:701-706 https://doi.org/10.1056/NEJM198703193161201
- Schomig A, Kastrati A, Mudra H, et al. Four-year experience with Palmaz-Schatz stenting in coronary angioplasty complicated by dissection with threatened or present vessel closure. Circulation 1994;90:2716-2724 https://doi.org/10.1161/01.CIR.90.6.2716
- Hoffmann R, Mintz GS, Dussaillant GR, et al. Patterns and mechanisms of in-stent restenosis. A serial intravascular ultrasound study. Circulation 1996;94:1247-1254 https://doi.org/10.1161/01.CIR.94.6.1247
- Heublein B, Rohde R, Kaese V, Niemeyer M, Hartung W, Haverich A. Biocorrosion of magnesium alloys: a new principle in cardiovascular implant technology? Heart 2003;89:651-656 https://doi.org/10.1136/heart.89.6.651
- Waksman R, Pakala R, Kuchulakanti PK, et al. Safety and efficacy of bioabsorbable magnesium alloy stents in porcine coronary arteries. Catheter Cardiovasc Interv 2006;68:607-617; discussion 618-619 https://doi.org/10.1002/ccd.20727
- Waksman R. Update on bioabsorbable stents: from bench to clinical. J Interv Cardiol 2006;19:414-421 https://doi.org/10.1111/j.1540-8183.2006.00187.x
- Erne P, Schier M, Resink TJ. The road to bioabsorbable stents: reaching clinical reality? Cardiovasc Intervent Radiol 2006;29:11-16 https://doi.org/10.1007/s00270-004-0341-9
- Peuster M, Wohlsein P, Brugmann M, et al. A novel approach to temporary stenting: degradable cardiovascular stents produced from corrodible metal-results 6-18 months after implantation into New Zealand white rabbits. Heart 2001;86:563-569 https://doi.org/10.1136/heart.86.5.563
- Peuster M, Hesse C, Schloo T, Fink C, Beerbaum P, von Schnakenburg C. Long-term biocompatibility of a corrodible peripheral iron stent in the porcine descending aorta. Biomaterials 2006;27:4955-4962 https://doi.org/10.1016/j.biomaterials.2006.05.029
- Hermawan H, Dube D, Mantovani D. Degradable metallic biomaterials: design and development of Fe-Mn alloys for stents. J Biomed Mater Res A 2010;93:1-11
- Schinhammer M, Hanzi AC, Loffler JF, Uggowitzer PJ. Design strategy for biodegradable Fe-based alloys for medical applications. Acta Biomater 2010;6:1705-1713 https://doi.org/10.1016/j.actbio.2009.07.039
- Liu B, Zheng YF. Effects of alloying elements (Mn, Co, Al, W, Sn, B, C and S) on biodegradability and in vitro biocompatibility of pure iron. Acta Biomater 2011;7:1407-1420 https://doi.org/10.1016/j.actbio.2010.11.001
- Buecker A, Spuentrup E, Ruebben A, Gunther RW. Artifactfree in-stent lumen visualization by standard magnetic resonance angiography using a new metallic magnetic resonance imaging stent. Circulation 2002;105:1772-1775 https://doi.org/10.1161/01.CIR.0000015852.60212.DB
- Trost DW, Zhang HL, Prince MR, et al. Three-dimensional MR angiography in imaging platinum alloy stents. J Magn Reson Imaging 2004;20:975-980 https://doi.org/10.1002/jmri.20209
- O'Brien BJ, Stinson JS, Boismier DA, Carroll WM. Characterization of an NbTaWZr alloy designed for magnetic resonance angiography compatible stents. Biomaterials 2008;29:4540-4545 https://doi.org/10.1016/j.biomaterials.2008.08.013
- O'Brien B, Stinson J, Carroll W. Development of a new niobium-based alloy for vascular stent applications. J Mech Behav Biomed Mater 2008;1:303-312 https://doi.org/10.1016/j.jmbbm.2007.11.003
- American Society for Testing and Materials (ASTM) standard F2119-07 (2013): Standard test method for evaluation of MR image artifacts from passive implants. http://www.astm.org/Standards/F2119.htm. Accessed June 19, 2015
- Port JD, Pomper MG. Quantification and minimization of magnetic susceptibility artifacts on GRE images. J Comput Assist Tomogr 2000;24:958-964 https://doi.org/10.1097/00004728-200011000-00024
- Wang Y, Truong TN, Yen C, et al. Quantitative evaluation of susceptibility and shielding effects of nitinol, platinum, cobalt-alloy, and stainless steel stents. Magn Reson Med 2003;49:972-976 https://doi.org/10.1002/mrm.10450
- Coecke S, Balls M, Bowe G, et al. Guidance on good cell culture practice. a report of the second ECVAM task force on good cell culture practice. Altern Lab Anim 2005;33:261-287 https://doi.org/10.1177/026119290503300313
- Gu X, Zheng Y, Cheng Y, Zhong S, Xi T. In vitro corrosion and biocompatibility of binary magnesium alloys. Biomaterials 2009;30:484-498 https://doi.org/10.1016/j.biomaterials.2008.10.021
- Choi JW, Roh HG, Moon WJ, et al. Time-resolved 3D contrast-enhanced MRA on 3.0T: a non-invasive followup technique after stent-assisted coil embolization of the intracranial aneurysm. Korean J Radiol 2011;12:662-670 https://doi.org/10.3348/kjr.2011.12.6.662
- Takayama K, Taoka T, Nakagawa H, et al. Usefulness of contrast-enhanced magnetic resonance angiography for follow-up of coil embolization with the enterprise stent for cerebral aneurysms. J Comput Assist Tomogr 2011;35:568-572 https://doi.org/10.1097/RCT.0b013e31822bd498
- Seok JH, Choi HS, Jung SL, et al. Artificial luminal narrowing on contrast-enhanced magnetic resonance angiograms on an occasion of stent-assisted coiling of intracranial aneurysm: in vitro comparison using two different stents with variable imaging parameters. Korean J Radiol 2012;13:550-556 https://doi.org/10.3348/kjr.2012.13.5.550
- Crossgrove J, Zheng W. Manganese toxicity upon overexposure. NMR Biomed 2004;17:544-553 https://doi.org/10.1002/nbm.931
- Reaney SH, Bench G, Smith DR. Brain accumulation and toxicity of Mn(II) and Mn(III) exposures. Toxicol Sci 2006;93:114-124 https://doi.org/10.1093/toxsci/kfl028
- Chang Y, Jin SU, Kim Y, et al. Decreased brain volumes in manganese-exposed welders. Neurotoxicology 2013;37:182-189 https://doi.org/10.1016/j.neuro.2013.05.003
- Chen JY, Tsao GC, Zhao Q, Zheng W. Differential cytotoxicity of Mn(II) and Mn(III): special reference to mitochondrial [Fe-S] containing enzymes. Toxicol Appl Pharmacol 2001;175:160-168 https://doi.org/10.1006/taap.2001.9245
- Hermawan H, Purnama A, Dube D, Couet J, Mantovani D. Fe-Mn alloys for metallic biodegradable stents: degradation and cell viability studies. Acta Biomater 2010;6:1852-1860 https://doi.org/10.1016/j.actbio.2009.11.025
Cited by
- Effects of Milling Time and Process Control Agent on the Austenite Stability of Nanocrystalline Fe-10%Mn Alloy Obtained via Spark Plasma Sintering vol.59, pp.7, 2015, https://doi.org/10.2320/matertrans.m2018099
- Effect of equal-channel angular pressing on structure and properties of Fe-Mn-С alloys for biomedical applications vol.30, pp.None, 2015, https://doi.org/10.1016/j.mtcomm.2021.103048