DOI QR코드

DOI QR Code

Pyrolysis Hazard for Nano and Micro-sized Aluminium Dusts

알루미늄 나노 및 마이크로 입자의 열분해 위험성

  • Han, Ou-Sup (Occupational Safety & Health Research Institute, KOSHA)
  • 한우섭 (한국산업안전보건공단 산업안전보건연구원)
  • Received : 2015.09.22
  • Accepted : 2015.10.23
  • Published : 2015.10.30

Abstract

Aluminum dusts, from micro to nano-scale, are widely used in various applications such as propulsion and pyrotechnic compounds because of high burning rate. In this study, the pyrolysis hazard of aluminum dusts with different median size (sized by 70 nm, 100 nm, $6{\mu}m$, $15{\mu}m$) were investigated experimentally. The thermal decomposition characteristics of aluminum dusts with the variation of heating rate were investigated using TGA (Thermo gravimetric analysis) and was estimated the minimum ignition temperature from temperature of weight gain in nano and micro-sized aluminum dusts with different diameter. In the same condition of heating rate, the temperature of weight gain in aluminum dust layers increased with increasing of particle size and increased with increasing of heating rates in air. From the results, it was estimated that the pyrolysis hazard of aluminum dusts decrease with increasing of mean diameter.

나노 및 마이크로 크기의 알루미늄(Al) 분진은 매우 높은 연소열을 가지고 있어서 로켓 추진체와 폭발물 등을 제조하는 원료로 많이 사용되고 있다. 본 연구에서는 서로 다른 크기의 입자경 (70 nm, 100 nm, $6{\mu}m$, $15{\mu}m$)을 가진 알루미늄 분진을 사용하여 열분해 위험성을 실험적으로 검토하였다. 이를 위해 열중량분석장치(TGA)를 사용하여 승온속도의 변화에 따른 열분해특성을 조사하고 입경이 다른 나노 및 마이크로 크기의 Al에서의 중량개시온도(Temperature of weight gain)로부터 발화온도를 추정하였다. 승온속도가 동일한 조건에서 Al분진의 중량개시온도는 입경이 증가할수록 또한 공기중 승온속도가 증가할수록 증가하는 경향을 나타냈다. 이러한 실험결과로부터 Al분진의 열분해 위험성은 분진 입자경의 증가와 함께 감소할 것으로 추정되었다.

Keywords

References

  1. Database for Major industrial accidents, Korea Occupational Safety and Health Agency, (1988-2014)
  2. Han, O.S., Fire and explosion characteristics of combustible nanoparticles, Occupational Safety & Health Research Institute, KOSHA, 2013-OSHIR- 590, 6-8, (2013)
  3. Yetter, R.A., Risha, G.A., Son, S.F., Metal particle combustion and nanotechnology, Proc. Combust. Inst. 32, 1819-1838 (2009) https://doi.org/10.1016/j.proci.2008.08.013
  4. Han, O.S., Explosion Properties of Nano and Micro-sized Aluminium Particles, KIGAS, Vol.18, No.5, 20-25 (2014)
  5. Kwok, Q., Fouchard, R., Turcotte, A., Lightfoot, P., Bowes, R., Jones, D., Characterization of aluminum nanopowder compositions, Propellants, Explosives, Pyrotechnics, Pyrotechnics, 27, 229-240, (2002) https://doi.org/10.1002/1521-4087(200209)27:4<229::AID-PREP229>3.0.CO;2-B
  6. Eckhoff, R.K., Dust Explosions in the Process Industries, third ed., Gulf Professional Publishing, (2003)
  7. Trunov, M.A., Schoenitz, M., Zhu, X., Dreizin, E.L., Effect of polymorphic phase transformation in $Al_2O_3$ film on oxidation kinetics of aluminum powders, Combust. Flame, 140, 310-318, (2005) https://doi.org/10.1016/j.combustflame.2004.10.010
  8. Richard A. Yetter, Grant Risha, Steven F. Son, "Metal particle combustion and nano technology". Proceedings of the Combustion Institute, 32, 1819-1838, (2009) https://doi.org/10.1016/j.proci.2008.08.013