DOI QR코드

DOI QR Code

Oxygen Permeability and Resistance to Carbon Dioxide of SrCo0.8Fe0.1Nb0.1O3-δ Ceramic Membrane

SrCo0.8Fe0.1Nb0.1O3-δ 세라믹 분리막의 산소투과 특성 및 이산화탄소에 대한 내성

  • Kim, Eun Ju (Department of Chemical and Biochemical Engineering, Dongguk University) ;
  • Park, Se Hyoung (Department of Chemical and Biochemical Engineering, Dongguk University) ;
  • Park, Jung Hoon (Department of Chemical and Biochemical Engineering, Dongguk University) ;
  • Baek, Il Hyun (Korea Institute of Energy Research)
  • 김은주 (동국대학교 화공생물공학과) ;
  • 박세형 (동국대학교 화공생물공학과) ;
  • 박정훈 (동국대학교 화공생물공학과) ;
  • 백일현 (한국에너지기술연구원)
  • Received : 2015.10.08
  • Accepted : 2015.10.22
  • Published : 2015.10.31

Abstract

$SrCo_{0.8}Fe_{0.1}Nb_{0.1}O_{3-{\delta}}$ oxide was synthesized by solid state reaction method. Dense ceramic membrane was prepared using as-prepared powder by pressing and sintering at $1250^{\circ}C$. XRD result of membrane showed single perovskite structure. The oxygen permeability were measured under 0.21 atm of oxygen partial pressure ($P_{O_2}$) and between 800 and $950^{\circ}C$. The oxygen permeation flux of $SrCo_{0.8}Fe_{0.1}Nb_{0.1}O_{3-{\delta}}$ membrane was increased with the increasing temperature. The maximum oxygen permeation flux was $1.839mL/min{\cdot}cm^2$ at $950^{\circ}C$. Long period permeability experiment was carried out to confirm the phase stability and $CO_2$-tolerance of membrane containing Nb in the condition of air with $CO_2$ (500 ppm) as feed stream at $900^{\circ}C$. The phase stability and $CO_2$-tolerance of $SrCo_{0.8}Fe_{0.1}Nb_{0.1}O_{3-{\delta}}$ were investigated by XRD and TG analysis. The result of $SrCo_{0.8}Fe_{0.1}Nb_{0.1}O_{3-{\delta}}$ which exposed carbon dioxide for 100 hours indicated 8wt% of $SrCO_3$. But it was known that the level of $SrCO_3$ production dose not have a significant effect on oxygen permeability.

고상반응법을 이용하여 $SrCo_{0.8}Fe_{0.1}Nb_{0.1}O_{3-{\delta}}$ 조성의 산화물을 합성하였으며, 합성된 분말은 압축 성형 후 $1250^{\circ}C$에서 소결하여 치밀한 세라믹 분리막을 제조하였다. XRD 분석을 통해 단일상의 페롭스카이트 구조를 확인하였다. 산소 분압이 0.21 atm, 측정 온도가 $800{\sim}950^{\circ}C$인 조건하에서 산소투과를 분석한 결과 온도가 증가할수록 산소투과량은 증가하였고, $950^{\circ}C$에서 $1.839mL/min{\cdot}cm^2$로 최대값을 나타내었다. 니오븀(Nb)을 포함한 세라믹 분리막의 상안정성 및 이산화탄소 내성을 확인하기 위하여 $900^{\circ}C$에서 이산화탄소가 500 ppm이 포함된 혼합공기를 이용하여 장기투과 실험을 수행하였다. 이산화탄소에 노출된 $SrCo_{0.8}Fe_{0.1}Nb_{0.1}O_{3-{\delta}}$의 상안정성은 XRD와 TG로 분석하였다. 분석 결과, 이산화탄소에 노출된 $SrCo_{0.8}Fe_{0.1}Nb_{0.1}O_{3-{\delta}}$ 조성의 경우 약 8%의 $SrCO_3$가 생성되었으나, 이 수준의 $SrCO_3$ 생성량은 분리막의 산소투과도에 큰 영향을 주지 않는 것을 확인하였다.

Keywords

References

  1. J. D. Figueroa, T. Fout, S. Plasynski, H. McIlvried, and R. D. Srivastava, "Advances in $CO_2$ capture technology-the U. S. department of energy's carbon sequestration program", Int. J. Greenh. Gas Control, 2, 9 (2008). https://doi.org/10.1016/S1750-5836(07)00094-1
  2. T. Wall, Y. Liu, C. Spero, L. Elliott, S. Khare, R. Rathnam, F. Zeenathal, B. Moghtaderi, B. Buhre, C. Sheng, R. Gupta, T. Yamada, K. Makino, and J. Yu, "An overview on oxyfuel coal combustion- state of the art research and technology development", Chem. Eng. Res. Des., 87, 1003 (2009). https://doi.org/10.1016/j.cherd.2009.02.005
  3. A. Leo, S. Liu, and J. C. D. D. Costa, "Development of mixed conducting membranes for clean coal energy delivery", Int. J. Greenh. Gas Control, 3, 357 (2009). https://doi.org/10.1016/j.ijggc.2008.11.003
  4. S. S. Hashim, A. R. Mohamed, and S. Bhatia, "Oxygen separation from air using ceramic-based membrane technology for sustainable fuel production and power generation", Renew. Sust. Energ. Rev., 15, 1284 (2011). https://doi.org/10.1016/j.rser.2010.10.002
  5. C. Yacou, J. Sunarso, C. X. C. Lin, S. Smart, S. Liu, and J. C. D. D. Costa, "Palladium surface modified $La_{0.6}Sr_{0.4}Co_{0.2}Fe_{0.8}O_{3-\delta}$ hollow fibre for oxygen separation", J. Membr. Sci., 380, 223 (2011). https://doi.org/10.1016/j.memsci.2011.07.008
  6. M. C. Carbo, D. Jansen, C. Hendriks, E. D. Visser, G. J. Ruijg, and J. Davison, "Opportunities for $CO_2$ capture through oxygen conducting membranes at medium-scale oxyfuel coal boilers", Energy Procedia, 1, 487 (2009). https://doi.org/10.1016/j.egypro.2009.01.065
  7. S. Engels, F. Beggel, M. Modigell, and H. Stadler, "Simulation of a membrane unit for oxyfuel power plants under consideration of realistic BSCF membrane properties", J. Membr. Sci., 359, 93 (2010). https://doi.org/10.1016/j.memsci.2010.01.048
  8. H. Stadler, F. Beggel, M. Habermehl, B. Persigehl, R. Kneer, M. Modigell, and P. Jeschke, "Oxyfuel coal combustion by efficient integration of oxygen transport membranes", Int. J. Greenh. Gas Control, 5, 7 (2011). https://doi.org/10.1016/j.ijggc.2010.03.004
  9. K. T. Lim, T. L. Cho, K. S. Lee, S. K. Woo, K. B. Park, and J. W. Kim, "Oxygen permeation properties of $La_{0.6}Sr_{0.4}Co_{0.2}Fe_{0.8}O_{3-\delta}$ mixed-conducting membrane", J. Korean. Ceram. Soc., 38, 787 (2001).
  10. A. Leo, S. Smart, S. Liu, and J. C. D. D. Costa, "High performance perovskite hollow fibres for oxygen separation", J. Membr. Sci., 368, 64 (2011). https://doi.org/10.1016/j.memsci.2010.11.002
  11. J. P. Kim, J. H. Park, and K. Y. Kim, "Comparison of oxygen permeability and stability of $La_{0.6}Sr_{0.4}B_{0.2}Fe_{0.8}O_{3-\delta}$ (B=Co, Ti) membrane", J. Energy & Climate Change, 2, 75 (2007).
  12. S. Song, P. Zhang, M. Han, and S. C. Singhal, "Oxygen permeation and partial oxidation of methane reaction in $Ba_{0.9}Co_{0.7}Fe_{0.2}Nb_{0.1}O_{3-\delta}$ oxygen permeation membrane", J. Membr. Sci., 415, 654 (2012).
  13. H. Kusaba, Y. Shibata, K. Sasaki, and Y. Teraoka, "Surface effect on oxygen permeation through dense membrane of mixed-conductive LSCF perovskite- type oxide", Solid State Ionics, 177, 2249 (2006). https://doi.org/10.1016/j.ssi.2006.05.038
  14. S. Diethelm, J. V. herle, P. H. Middleton, and D. Favrat, "Oxygen permeation and stability of $La_{0.4}Ca_{0.6}Fe_{1-x}Co_xO_{3-\delta}$ (x = 0, 0.25, 0.5) membranes", J. Power Sources, 118, 270 (2003). https://doi.org/10.1016/S0378-7753(03)00098-3
  15. J. Yi, T. E. Weirich, and M. Schroeder, "$CO_2$ corrosion and recovery of perovskite-type $BaCo_{1-x-y}Fe_xNb_yO_{3-\delta}$ membranes", J. Membr. Sci., 437, 49 (2013). https://doi.org/10.1016/j.memsci.2013.02.049
  16. M. Arnold, H. Wang, and A. Feldhoff, "Influence of $CO_2$ on the oxygen permeation performance and the microstructure of perovskite-type $(Ba_{0.5}Sr_{0.5})(Co_{0.8}Fe_{0.2})O_{3-\delta}$ membranes", J. Membr. Sci., 293, 44 (2007). https://doi.org/10.1016/j.memsci.2007.01.032
  17. J. Yi, M. Schroeder, T. Weirich, and J. Mayer, "Behavior of Ba(Co, Fe, Nb)$O_{3-\delta}$ perovskite in $CO_2$-containing atmospheres: Degradation mechanism and materials design", Chem. Mater., 22, 6246 (2010). https://doi.org/10.1021/cm101665r
  18. J. Yi and M. Schroeder, "High temperature degradation of $Ba_{0.5}Sr_{0.5}Co_{0.8}Fe_{0.2}O_{3-\delta}$ membranes in atmospheres containing concentrated carbon dioxide", J. Membr. Sci., 378, 163 (2011). https://doi.org/10.1016/j.memsci.2011.04.044
  19. Q. Zeng, Y. B. Zuo, C. G. Fan, and C. S. Chen, "$CO_2$-tolerant oxygen separation membranes targeting $CO_2$ capture application", J. Membr. Sci., 335, 140 (2009). https://doi.org/10.1016/j.memsci.2009.03.012
  20. T. Nagai, W. Ito, and T. Sakon, "Relationship between cation substitution and stability of perovskite structure in $SrCoO_{3-\delta}$-based mixed conductors", Solid State Ionics, 177, 3433 (2007). https://doi.org/10.1016/j.ssi.2006.10.022
  21. Y. Cheng, H. Zhao, D. Teng, F. Li, X. Lu, and W. Ding, "Investigation of Ba fully occupied A-site BaCo_{0.7}Fe_{0.3-x}Nb_xO_{3-\delta} perovskite stabilized by low concentration of Nb for oxygen permeation membrane", J. Membr. Sci., 322, 484 (2008). https://doi.org/10.1016/j.memsci.2008.05.065
  22. M. Harada, K. Domen, M. Hara, and T. Tatsumi, "$Ba_{1.0}Co_{0.7}Fe_{0.2}Nb_{0.1}O_{3-\delta}$ dense ceramic as an oxygen permeable membrane for partial oxidation of methane to synthesis gas", Chem. Lett., 35, 1326 (2006). https://doi.org/10.1246/cl.2006.1326
  23. J. Leitner, M. Hampl, K. Ruzicka, M. Straka, D. Sendmidubsky, and P. Svoboda, "Thermodynamic properties of strontium metaniobate $SrNb_2O_6$", J. Therm. Anal. Calorim., 91, 985 (2008). https://doi.org/10.1007/s10973-007-8592-8
  24. J. P. Kim, S. H. Son, J. H. Park, and Y. Lee, "Preparation and oxygen permeability of Nb-doped BCFN ceramic membrane", Membr. J., 21, 55 (2011).
  25. S. Li, W. Jin, P. Huang, N. Xu, J. Shi, M. Z. C. Hu, E. A. Payzant, and Y. H. Ma, "Perovskite-related $ZrO_2$-doped $SrCo_{0.4}$ $Fe_{0.6}O_{3-\delta}$ membrane for oxygen permeation", Aiche J., 45, 276 (1999). https://doi.org/10.1002/aic.690450208
  26. S. Kim, Y. L. Yang, R. Christoffersen, and A. J. Jacobson, "Oxygen permeation, electrical conductivity and stability of the perovskite oxide $La_{0.2}Sr_{0.8}Cu_{0.4}Co_{0.6}O_{3-x}$", Solid State Ionics, 104, 57 (1997). https://doi.org/10.1016/S0167-2738(97)00427-X
  27. T. Klande, O. Ravkina, and A. Feldhoff, "Effect of A-site lanthanum doping on the $CO_2$ tolerance of $SrCo_{0.8}Fe_{0.2}O_{3-\delta}$ oxygen-transporting membranes", J. Membr. Sci., 437, 122 (2013). https://doi.org/10.1016/j.memsci.2013.02.051
  28. J. H. Park, J. P. Kim, and S. H. Son, "Oxygen permeation and stability of $Ba_{0.5}Sr_{0.5}Co_{0.8}Fe_{0.2}O_{3-\delta}$ membrane according to trace elements and oxygen partial pressure in synthetic air", Energy Procedia, 1, 369 (2009). https://doi.org/10.1016/j.egypro.2009.01.050
  29. H. Lu, S. H. Son, J. P. Kim, and J. H. Park, "A Fe/Nb co-doped $Sr(Co_{0.8}Fe_{0.1}Nb_{0.1})O_{3-\delta}$ perovskite oxide for air separation: Structural, sintering and oxygen permeating properties", Mater. Lett., 65, 702 (2011). https://doi.org/10.1016/j.matlet.2010.11.013