References
-
J. D. Figueroa, T. Fout, S. Plasynski, H. McIlvried, and R. D. Srivastava, "Advances in
$CO_2$ capture technology-the U. S. department of energy's carbon sequestration program", Int. J. Greenh. Gas Control, 2, 9 (2008). https://doi.org/10.1016/S1750-5836(07)00094-1 - T. Wall, Y. Liu, C. Spero, L. Elliott, S. Khare, R. Rathnam, F. Zeenathal, B. Moghtaderi, B. Buhre, C. Sheng, R. Gupta, T. Yamada, K. Makino, and J. Yu, "An overview on oxyfuel coal combustion- state of the art research and technology development", Chem. Eng. Res. Des., 87, 1003 (2009). https://doi.org/10.1016/j.cherd.2009.02.005
- A. Leo, S. Liu, and J. C. D. D. Costa, "Development of mixed conducting membranes for clean coal energy delivery", Int. J. Greenh. Gas Control, 3, 357 (2009). https://doi.org/10.1016/j.ijggc.2008.11.003
- S. S. Hashim, A. R. Mohamed, and S. Bhatia, "Oxygen separation from air using ceramic-based membrane technology for sustainable fuel production and power generation", Renew. Sust. Energ. Rev., 15, 1284 (2011). https://doi.org/10.1016/j.rser.2010.10.002
-
C. Yacou, J. Sunarso, C. X. C. Lin, S. Smart, S. Liu, and J. C. D. D. Costa, "Palladium surface modified
$La_{0.6}Sr_{0.4}Co_{0.2}Fe_{0.8}O_{3-\delta}$ hollow fibre for oxygen separation", J. Membr. Sci., 380, 223 (2011). https://doi.org/10.1016/j.memsci.2011.07.008 -
M. C. Carbo, D. Jansen, C. Hendriks, E. D. Visser, G. J. Ruijg, and J. Davison, "Opportunities for
$CO_2$ capture through oxygen conducting membranes at medium-scale oxyfuel coal boilers", Energy Procedia, 1, 487 (2009). https://doi.org/10.1016/j.egypro.2009.01.065 - S. Engels, F. Beggel, M. Modigell, and H. Stadler, "Simulation of a membrane unit for oxyfuel power plants under consideration of realistic BSCF membrane properties", J. Membr. Sci., 359, 93 (2010). https://doi.org/10.1016/j.memsci.2010.01.048
- H. Stadler, F. Beggel, M. Habermehl, B. Persigehl, R. Kneer, M. Modigell, and P. Jeschke, "Oxyfuel coal combustion by efficient integration of oxygen transport membranes", Int. J. Greenh. Gas Control, 5, 7 (2011). https://doi.org/10.1016/j.ijggc.2010.03.004
-
K. T. Lim, T. L. Cho, K. S. Lee, S. K. Woo, K. B. Park, and J. W. Kim, "Oxygen permeation properties of
$La_{0.6}Sr_{0.4}Co_{0.2}Fe_{0.8}O_{3-\delta}$ mixed-conducting membrane", J. Korean. Ceram. Soc., 38, 787 (2001). - A. Leo, S. Smart, S. Liu, and J. C. D. D. Costa, "High performance perovskite hollow fibres for oxygen separation", J. Membr. Sci., 368, 64 (2011). https://doi.org/10.1016/j.memsci.2010.11.002
-
J. P. Kim, J. H. Park, and K. Y. Kim, "Comparison of oxygen permeability and stability of
$La_{0.6}Sr_{0.4}B_{0.2}Fe_{0.8}O_{3-\delta}$ (B=Co, Ti) membrane", J. Energy & Climate Change, 2, 75 (2007). -
S. Song, P. Zhang, M. Han, and S. C. Singhal, "Oxygen permeation and partial oxidation of methane reaction in
$Ba_{0.9}Co_{0.7}Fe_{0.2}Nb_{0.1}O_{3-\delta}$ oxygen permeation membrane", J. Membr. Sci., 415, 654 (2012). - H. Kusaba, Y. Shibata, K. Sasaki, and Y. Teraoka, "Surface effect on oxygen permeation through dense membrane of mixed-conductive LSCF perovskite- type oxide", Solid State Ionics, 177, 2249 (2006). https://doi.org/10.1016/j.ssi.2006.05.038
-
S. Diethelm, J. V. herle, P. H. Middleton, and D. Favrat, "Oxygen permeation and stability of
$La_{0.4}Ca_{0.6}Fe_{1-x}Co_xO_{3-\delta}$ (x = 0, 0.25, 0.5) membranes", J. Power Sources, 118, 270 (2003). https://doi.org/10.1016/S0378-7753(03)00098-3 -
J. Yi, T. E. Weirich, and M. Schroeder, "
$CO_2$ corrosion and recovery of perovskite-type$BaCo_{1-x-y}Fe_xNb_yO_{3-\delta}$ membranes", J. Membr. Sci., 437, 49 (2013). https://doi.org/10.1016/j.memsci.2013.02.049 -
M. Arnold, H. Wang, and A. Feldhoff, "Influence of
$CO_2$ on the oxygen permeation performance and the microstructure of perovskite-type$(Ba_{0.5}Sr_{0.5})(Co_{0.8}Fe_{0.2})O_{3-\delta}$ membranes", J. Membr. Sci., 293, 44 (2007). https://doi.org/10.1016/j.memsci.2007.01.032 -
J. Yi, M. Schroeder, T. Weirich, and J. Mayer, "Behavior of Ba(Co, Fe, Nb)
$O_{3-\delta}$ perovskite in$CO_2$ -containing atmospheres: Degradation mechanism and materials design", Chem. Mater., 22, 6246 (2010). https://doi.org/10.1021/cm101665r -
J. Yi and M. Schroeder, "High temperature degradation of
$Ba_{0.5}Sr_{0.5}Co_{0.8}Fe_{0.2}O_{3-\delta}$ membranes in atmospheres containing concentrated carbon dioxide", J. Membr. Sci., 378, 163 (2011). https://doi.org/10.1016/j.memsci.2011.04.044 -
Q. Zeng, Y. B. Zuo, C. G. Fan, and C. S. Chen, "
$CO_2$ -tolerant oxygen separation membranes targeting$CO_2$ capture application", J. Membr. Sci., 335, 140 (2009). https://doi.org/10.1016/j.memsci.2009.03.012 -
T. Nagai, W. Ito, and T. Sakon, "Relationship between cation substitution and stability of perovskite structure in
$SrCoO_{3-\delta}$ -based mixed conductors", Solid State Ionics, 177, 3433 (2007). https://doi.org/10.1016/j.ssi.2006.10.022 - Y. Cheng, H. Zhao, D. Teng, F. Li, X. Lu, and W. Ding, "Investigation of Ba fully occupied A-site BaCo_{0.7}Fe_{0.3-x}Nb_xO_{3-\delta} perovskite stabilized by low concentration of Nb for oxygen permeation membrane", J. Membr. Sci., 322, 484 (2008). https://doi.org/10.1016/j.memsci.2008.05.065
-
M. Harada, K. Domen, M. Hara, and T. Tatsumi, "
$Ba_{1.0}Co_{0.7}Fe_{0.2}Nb_{0.1}O_{3-\delta}$ dense ceramic as an oxygen permeable membrane for partial oxidation of methane to synthesis gas", Chem. Lett., 35, 1326 (2006). https://doi.org/10.1246/cl.2006.1326 -
J. Leitner, M. Hampl, K. Ruzicka, M. Straka, D. Sendmidubsky, and P. Svoboda, "Thermodynamic properties of strontium metaniobate
$SrNb_2O_6$ ", J. Therm. Anal. Calorim., 91, 985 (2008). https://doi.org/10.1007/s10973-007-8592-8 - J. P. Kim, S. H. Son, J. H. Park, and Y. Lee, "Preparation and oxygen permeability of Nb-doped BCFN ceramic membrane", Membr. J., 21, 55 (2011).
-
S. Li, W. Jin, P. Huang, N. Xu, J. Shi, M. Z. C. Hu, E. A. Payzant, and Y. H. Ma, "Perovskite-related
$ZrO_2$ -doped$SrCo_{0.4}$ $Fe_{0.6}O_{3-\delta}$ membrane for oxygen permeation", Aiche J., 45, 276 (1999). https://doi.org/10.1002/aic.690450208 -
S. Kim, Y. L. Yang, R. Christoffersen, and A. J. Jacobson, "Oxygen permeation, electrical conductivity and stability of the perovskite oxide
$La_{0.2}Sr_{0.8}Cu_{0.4}Co_{0.6}O_{3-x}$ ", Solid State Ionics, 104, 57 (1997). https://doi.org/10.1016/S0167-2738(97)00427-X -
T. Klande, O. Ravkina, and A. Feldhoff, "Effect of A-site lanthanum doping on the
$CO_2$ tolerance of$SrCo_{0.8}Fe_{0.2}O_{3-\delta}$ oxygen-transporting membranes", J. Membr. Sci., 437, 122 (2013). https://doi.org/10.1016/j.memsci.2013.02.051 -
J. H. Park, J. P. Kim, and S. H. Son, "Oxygen permeation and stability of
$Ba_{0.5}Sr_{0.5}Co_{0.8}Fe_{0.2}O_{3-\delta}$ membrane according to trace elements and oxygen partial pressure in synthetic air", Energy Procedia, 1, 369 (2009). https://doi.org/10.1016/j.egypro.2009.01.050 -
H. Lu, S. H. Son, J. P. Kim, and J. H. Park, "A Fe/Nb co-doped
$Sr(Co_{0.8}Fe_{0.1}Nb_{0.1})O_{3-\delta}$ perovskite oxide for air separation: Structural, sintering and oxygen permeating properties", Mater. Lett., 65, 702 (2011). https://doi.org/10.1016/j.matlet.2010.11.013