DOI QR코드

DOI QR Code

사이버나이프에서 Xsight spine tracking system을 이용한 3D 표적위치보정의 유용성 평가

Useful evaluation of 3D target location correction by using Xsight spine tracking system in CyberKnife

  • 정영준 (순천향대학교병원 방사선종양학과) ;
  • 김상현 (서울대학교병원 영상의학과)
  • 투고 : 2014.10.02
  • 심사 : 2015.01.20
  • 발행 : 2015.01.28

초록

사이버나이프치료에서 삽입된 금표지자의 삽입 개수 및 인식의 제한으로 인하여 3D DOF로 치료하는 경우 척추구조물 정렬을 가능하게 하는 Xsight spine tracking system으로 회전방향의 위치오차를 보정함으로서 표적위치오차를 개선하고, 치료방법의 대안을 제시하고자 한다. 실험결과 6D DOF에서 표적위치오차는 $0.214{\pm}0.058mm$, 종양내부에 삽입된 2개 금표지자를 이용한 3D DOF에서 $0.673{\pm}0.142mm$, 종양외부에 삽입된 2개 금표지자를 이용한 3D DOF에서 $1.126{\pm}0.253mm$, Xsight spine tracking system의 적용 한 3D DOF에서 $0.542{\pm}0.103mm$로 나타났다. 실험결과 척추 구조물로 회전방향에 대한 보정을 시행하였을 때 표적위치에 대한 정확성이 약 48% 향상되었다. 또한, 선량분포의 일치성도 약 3%가 향상되어 일치하는 것을 확인할 수 있었다. 따라서 척추구조물 정렬을 병용한 Xsight spine tracking system의 회전방향에 대한 보정은 유용한 것으로 평가 되었다.

The purpose of this study is to evaluate utility of rotating adjustment using Xsight spine tracking system in 3D DOF location adjusting method, to minimize error between 6D DOF and 3D DOF in fiducial tracking system. In this study, the result of 6D DOF target location error is $0.124{\pm}0.058mm$, using fiducial inside tumor 3D DOF $0.673{\pm}0.142mm$, outside tumor $1.126{\pm}0.253mm$, apply with Xsight spine tracking system 3D DOF $0.542{\pm}0.103mm$. As the experiment shows, it was demonstrated that rotating adjustment through Xsight spine tracking system is valuable in case of treatment in 3D DOF location error that makes increasing accuracy and dose distribution each approximately 48% and 3%. In accordance with result of this study is useful rotation.

키워드

참고문헌

  1. Mackie TR, Kapatoes J. (2003). Image guidance for precise conformal radiotherapy. Int J Radiat Oncol Biol Phys, Vol 56, No 1, pp 89-105. https://doi.org/10.1016/S0360-3016(03)00090-7
  2. Webb S. (1989). Optimization of conformal radiotherapy dose distribution by simulated annealing. Phys Med Biol, Vol 34, No 10, pp. 1349-1370. https://doi.org/10.1088/0031-9155/34/10/002
  3. Leksell L. (1951). The stereotaxic method and radiosurgery of the brain. Acta Chir Scand, Vol 4, No 102 pp. 316-319.
  4. Gros CM, Bur G. (1954). Radiosurgery of ovarian cancer. J Radiol Electrol Arch Electr Medicale, Vol 35, pp 132-133.
  5. Kim YS. (2008). CyberKnife Robotic Radiosurgery System for Cancer Treatment. J Korean Med Assoc, Vol 51, No 7, pp 630-637. https://doi.org/10.5124/jkma.2008.51.7.630
  6. Suh TS, Kim IH. (2008). Physics and Biological Background of Radiosurgery. J Korean Med Assoc, Vol 51, No 1, pp 16-26. https://doi.org/10.5124/jkma.2008.51.1.16
  7. Schweikard A, Glosser G. (2000) Robotic motion compensating for respiratory movement during radiosurgery. Comp Aided Surg, Vol 5, No 4, pp 263-277. https://doi.org/10.3109/10929080009148894
  8. Shimizus, Shirato H. (2000). Use of an implanted marker and real time tracking of the marker for the positioning of prostate and bladder cancers. Int J Radiat Oncol Biol Phys, Vol 48, No 5, pp 1591-1597. https://doi.org/10.1016/S0360-3016(00)00809-9
  9. Schweikard A, Shiomi H. (2004). Respiration tracking in radiosurgery. Med Phys, Vol 31, NO 10, pp 2737-2741.
  10. Jang JS, Lee DH. (2006). The Development of Quality Assurance Program for CyberKnife. J Korea radiat oncol, Vol 24, NO 3, pp 185-191.
  11. Coste-Maniere E, Olender D. (2005). Robotic whole body stereotactic radiosurgery clinical advantages of the CyberKnife integrated system. Int J Med Robotics Comput Assist Surg, Vol 1, No 2, pp 28-39. https://doi.org/10.1002/rcs.39
  12. Suzuki O, Shiomi H. (2007). Novel correction methods as alternatives for the six-dimensional correction in CyberKnife treatment. Radiat Med, Vol 25, No 1, pp 31-37. https://doi.org/10.1007/s11604-006-0092-4
  13. Accuray Rev. J. (2005). Fiducial Placement to Facilitate the Treatment of Pancreas and Liver Lesions with the CyberKnife System.
  14. Murphy MJ. (2002). Fiducial-based targeting accuracy for external beam radiotherapy. Med Phys, Vol 29, No 3, pp 334-344. https://doi.org/10.1118/1.1448823
  15. Kim GJ, Shim SJ. (2008). Evaluation of Real-time Measurement Liver Tumors Movement and SynchronyTM Systems Accuracy of Radiosurgery using a Robot CyberKnife. J Korea radiat oncol, Vol 26, NO 4, pp 263-270. https://doi.org/10.3857/jkstro.2008.26.4.263
  16. Murphy MJ, Chang SD. (2003). Patterns of patient movement during frameless image guided radiosurgery. Int J Radiat Oncol Biol Phys, Vol 55, No 5, pp 1400-1408. https://doi.org/10.1016/S0360-3016(02)04597-2
  17. Mallarajapatna GJ, Susheela SP. (2011). Technical note: image guided internal fiducial placement for stereotactic radiosurgery. Int J Radiat and Imag, Vol 21, No 1, pp 3-5.
  18. A Niroomand-Rad. (1998). Radiochromic film dosimetry: Recommendations of AAPM radiation therapy committee Task Group 55. Med Phys, Vol 25, No 11, pp 2093-2115. https://doi.org/10.1118/1.598407
  19. S Dieterich. (2011). Report of AAPM TG 135: Quality assurance for robotic radiosurgery. Med. Phys, Vol 38, No 6, pp 2914-2936. https://doi.org/10.1118/1.3579139
  20. Han SH, Cho BC. (2003) GafChromic Film Dosimetry for Stereotactic Radiosurgery with a Linear Accelerator. J Korea radiat oncol, Vol 21, No 2, pp 167-173.
  21. Kim WC, Kim HJ. (2011) Treatment Results of CyberKnife Radiosurgery for Patients with Primary or Recurrent Non-Small Cell Lung Cancer. J Korea radiat oncol, Vol 29, No 1, pp 28-35. https://doi.org/10.3857/jkstro.2011.29.1.28