DOI QR코드

DOI QR Code

A 900 MHz RFID Receiver with an Integrated Digital Data Slicer

디지털 데이터 슬라이서가 집적된 900 MHz 대역의 RFID 수신단

  • Cho, Younga (School of Electrical Engineering, Korea University) ;
  • Kim, Dong-Hyun (School of Electrical Engineering, Korea University) ;
  • Kim, Namhyung (School of Electrical Engineering, Korea University) ;
  • Rieh, Jae-Sung (School of Electrical Engineering, Korea University)
  • 조영아 (고려대학교 전기전자공학과) ;
  • 김동현 (고려대학교 전기전자공학과) ;
  • 김남형 (고려대학교 전기전자공학과) ;
  • 이재성 (고려대학교 전기전자공학과)
  • Received : 2014.10.22
  • Accepted : 2014.12.22
  • Published : 2015.01.30

Abstract

In this paper, a receiver has been developed in a $0.11-{\mu}m$ CMOS technology for 900 MHz RFID communication system applications. The receiver is composed of an envelope detector, a low-pass-filter, a comparator, D flip-flops, as well as an oscillator to provide the clock for digital blocks. The receiver is designed for low power consumption, which would be suitable for passive RFID tags. In this circuit, a digital data slicer was employed instead of the conventional analog data slicer in order to reduce the power consumption. The clock frequency is 1.68 MHz and the circuit operates with a power consumption as small as $5{\mu}W$. The chip size is $325{\mu}m{\times}290{\mu}m$ excluding the probing pads.

본 논문에서는 $0.11{\mu}m$ CMOS 공정을 이용한 900 MHz 대역의 RFID 통신 수신단을 제안한다. 본 RFID 수신단은 포락선 검출기와 저역 통과 필터, 비교기와 D-플립플롭, 그리고 디지털 블록의 클록을 공급하기 위한 발진기가 집적된 형태이며, 저전력으로 구동하도록 설계하여 수동 RFID 통신용 태그에 적합하게 하였다. 본 수신단은 종래의 아날로그 데이터 슬라이서가 아닌 디지털 데이터 슬라이서를 사용함으로써 전력 소모를 줄였다. 클록의 주파수는 1.68 MHz이고, 소비전력은 $5{\mu}W$이며, 제작된 회로의 크기는 측정 패드를 제외하고 $325{\mu}m{\times}290{\mu}m$이다.

Keywords

References

  1. Medeiros et al., "Passive UHF RFID tag for airport suitcase tracking and identification", in Antennas and Wireless Propagation Letters, vol. 10, pp.123-126, Mar. 2011. https://doi.org/10.1109/LAWP.2011.2112326
  2. 정재영, 박찬원, 염경환, "UHF 대역 RFID 리더 반송파 누설 억압 연구", 한국전자파학회논문지, 22(4), pp. 489- 499, Apr. 2011. https://doi.org/10.5515/KJKIEES.2011.22.4.489
  3. K. Finkenzeller, RFID Handbook, Second Edition, John Wiley & Sons, 2003.
  4. Anastasis C. Plycarpou, George Gregoriou, Loizos Papaloziou, and etc., "A healthcare application based on passive UHF RFID technology", Proceedings of the 5th European Conference on Antennas and Propagation (EUCAP), pp. 2814-2818, Apr. 2011.
  5. Kang, Leblebici, CMOS Digital Integrated Circuits Analysis and Design, Third Edition, McGraw Hill, 2005.
  6. Ali Beirami, Mohammad Takhi, and Hossein Shamsi, "Extracting trade-off boundaries of CMOS two-stage opamp using particle swarm optimization", International Symposium on Signal, Circuits and Systems, pp.1-4, Jul. 2009.
  7. Jong-Wook Lee, Duong Huynh Thai Vo, Quoc-Hung Huynh, and Sang Hoon Hong, "A fully integrated HFband passive RFID tag IC using 0.18-um CMOS technology for low-cost security applications", IEEE Transactions on Industrial Electronics, vol. 58, no. 6, Jun. 2011.
  8. Jong-Wook Lee, Bomson Lee, "A long-range UHF-band passive RFID tag IC based on high-Q design approach", IEEE Transaction on Industrial Electronics, vol. 56, no. 7, Jul. 2009.
  9. Udo Karthaus, Martin Fischer, "Fully integrated passive UHF RFID transponder IC with 16.7-uW minimum RF input power", IEEE Journal of Solid-state Circuits, vol. 38, no. 10, Oct. 2003.

Cited by

  1. D 2 ART: D irect D ata A ccessing from Passive R FID T ag for infra-less, contact-less, and battery-less pervasive computing vol.39, pp.8, 2015, https://doi.org/10.1016/j.micpro.2015.09.007