• Title/Summary/Keyword: Digital Data Slicer

Search Result 2, Processing Time 0.016 seconds

A 900 MHz RFID Receiver with an Integrated Digital Data Slicer (디지털 데이터 슬라이서가 집적된 900 MHz 대역의 RFID 수신단)

  • Cho, Younga;Kim, Dong-Hyun;Kim, Namhyung;Rieh, Jae-Sung
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.26 no.1
    • /
    • pp.63-70
    • /
    • 2015
  • In this paper, a receiver has been developed in a $0.11-{\mu}m$ CMOS technology for 900 MHz RFID communication system applications. The receiver is composed of an envelope detector, a low-pass-filter, a comparator, D flip-flops, as well as an oscillator to provide the clock for digital blocks. The receiver is designed for low power consumption, which would be suitable for passive RFID tags. In this circuit, a digital data slicer was employed instead of the conventional analog data slicer in order to reduce the power consumption. The clock frequency is 1.68 MHz and the circuit operates with a power consumption as small as $5{\mu}W$. The chip size is $325{\mu}m{\times}290{\mu}m$ excluding the probing pads.

An Efficient Method for Aneurysm Volume Quantification Applicable in Any Shape and Modalities

  • Chung, Jaewoo;Ko, Jung Ho
    • Journal of Korean Neurosurgical Society
    • /
    • v.64 no.4
    • /
    • pp.514-523
    • /
    • 2021
  • Objective : Aneurysm volume quantification (AVQ) using the equation of ellipsoid volume is widely used although it is inaccurate. Furthermore, AVQ with 3-dimensional (3D) rendered data has limitations in general use. A novel universal method for AVQ is introduced for any diagnostic modality and application to any shape of aneurysms. Methods : Relevant AVQ studies published from January 1997 to June 2019 were identified to determine common methods of AVQ. The basic idea is to eliminate the normal artery volume from 3D model with the aneurysm. After Digital Imaging and Communications in Medicine (DICOM) data is converted and exported to stereolithography (STL) file format, the 3D STL model is modified to remove the aneurysm and the volume difference between the 3D model with/without the aneurysm is defined as the aneurysm volume. Fifty randomly selected aneurysms from DICOM database were used to validate the different AVQ methods. Results : We reviewed and categorized AVQ methods in 121 studies. Approximately 60% used the ellipsoid method, while 24% used the 3D model. For 50 randomly selected aneurysms, volumes were measured using 3D Slicer, RadiAnt, and ellipsoid method. Using 3D Slicer as the reference, the ratios of mean difference to mean volume obtained by RadiAnt and ellipsoid method were -1.21±7.46% and 4.04±30.54%, respectively. The deviations between RadiAnt and 3D Slicer were small despite of aneurysm shapes, but those of ellipsoid method and 3D Slicer were large. Conclusion : In spite of inaccuracy, ellipsoid method is still mostly used. We propose a novel universal method for AVQ that is valid, low cost, and easy to use.