DOI QR코드

DOI QR Code

Dielectric Relaxation Properties of 0.5Ba(Zr0.2Ti0.8)O3-0.5(Ba0.7Ca0.3)TiO3 Ceramics with CuO Addition

CuO 첨가에 따른 0.5Ba(Zr0.2Ti0.8)O3-0.5(Ba0.7Ca0.3)TiO3 세라믹스의 유전 이완 특성

  • Bae, Seon Gi (Department of Electrical Engineering, Incheon National University) ;
  • Shin, Hyea-Kyoung (Department of Electrical Engineering, Incheon National University) ;
  • Lee, Suk-Jin (Department of Digital Information Communication, Ansan University) ;
  • Im, In-Ho (Department of Electrical Engineering, Shinansan University)
  • 배선기 (인천대학교 공과대학 전기공학과) ;
  • 신혜경 (인천대학교 공과대학 전기공학과) ;
  • 이석진 (안산대학교 디지털정보통신과) ;
  • 임인호 (신안산대학교 전기과)
  • Received : 2015.01.05
  • Accepted : 2015.01.16
  • Published : 2015.02.01

Abstract

We investigated the dielectric relaxation properties $0.5Ba(Zr_{0.2}Ti_{0.8})O_3-0.5(Ba_{0.7}Ca_{0.3})TiO_3$ ceramics with CuO addition. With increasing CuO addition, the lattice parameter was increased by substitution of small amount $Cu^{2+}$ ion in B-site of $0.5Ba(Zr_{0.2}Ti_{0.8})O_3-0.5(Ba_{0.7}Ca_{0.3})TiO_3$ ceramics. Also the grain size and the maximum dielectric constant of $0.5Ba(Zr_{0.2}Ti_{0.8})O_3-0.5(Ba_{0.7}Ca_{0.3})TiO_3$ ceramics was decreased with increasing amounts of CuO addition. Moreover, the diffused phase transition properties (${\gamma}$) of $0.5Ba(Zr_{0.2}Ti_{0.8})O_3-0.5(Ba_{0.7}Ca_{0.3})TiO_3$ ceramics was increased by compositional fluctuation with increasing of CuO amount, changed from 1.45 at 1 wt% CuO addition to 1.94 at 7 wt% CuO addition.

Keywords

References

  1. Z. G. Ye and H. Schmid, Ferroelectrics, 145, 83 (1993). https://doi.org/10.1080/00150199308222438
  2. J. Ravez, C. Broustera, and A. Simon, J. Mater. Chem., 9, 1609 (1999). https://doi.org/10.1039/a902335f
  3. S. Su, R. Zuo, S. Lu, Z. Xu, X. Wang, and L. Li, Current Appl. Phys., 11, S120 (2011).
  4. V. V. Shvartsman and D. C. Lupascu, J. Am. Ceram. Soc., 95, 1 (2012). https://doi.org/10.1111/j.1551-2916.2011.04952.x
  5. I. H. IM and K. H. Chung, J. Nanosci. Nanotechnol., 14, 12 (2014).
  6. S. G. Bae, H. K. Shin, S. H. Lee, and I. H. Im, J. KIEEME, 27, 367 (2014).
  7. D. Liang, X. Zhu, J. Zhu, J. Zhu, and D. Xiao, Ceramic International, 40, 2585 (2014). https://doi.org/10.1016/j.ceramint.2013.10.084
  8. S. Su, R. Zuo, X. Wang, and L. Li, Materials Research Bulletin, 45, 124 (2010). https://doi.org/10.1016/j.materresbull.2009.09.033
  9. K. Uchino and S. Nomura, Integr. Ferroelectric, 44, 55 (1982). https://doi.org/10.1080/00150198208260644
  10. H. Yu and Z. G. Ye, J. Appl. Phys., 103, 034114 (2008). https://doi.org/10.1063/1.2838479