DOI QR코드

DOI QR Code

ON SPACELIKE ROTATIONAL SURFACES WITH POINTWISE 1-TYPE GAUSS MAP

  • Received : 2014.02.13
  • Published : 2015.01.31

Abstract

In this paper, we study a class of spacelike rotational surfaces in the Minkowski 4-space $\mathbb{E}^4_1$ with meridian curves lying in 2-dimensional spacelike planes and having pointwise 1-type Gauss map. We obtain all such surfaces with pointwise 1-type Gauss map of the first kind. Then we prove that the spacelike rotational surface with flat normal bundle and pointwise 1-type Gauss map of the second kind is an open part of a spacelike 2-plane in $\mathbb{E}^4_1$.

Keywords

References

  1. K. Arslan, B. K. Bayram, B. Bulca, Y. H. Kim, C. Murathan, and G. Ozturk, Rotational embeddings in $E^4$ with pointwise 1-type gauss map, Turk J. Math. 34 (2010), 1-7.
  2. B.-Y. Chen, Total Mean Curvature and Submanifolds of Finite Type, World Scientific, Singapor-New Jersey-London, 1984.
  3. B.-Y. Chen, M. Choi, and Y. H. Kim, Surfaces of revolution with pointwise 1-type Gauss map, J. Korean Math. Soc. 42 (2005), no. 3, 447-455. https://doi.org/10.4134/JKMS.2005.42.3.447
  4. B.-Y. Chen and P. Piccinni, Submanifolds with finite type Gauss map, Bull. Aust. Math. Soc. 35 (1987), no. 2, 161-186. https://doi.org/10.1017/S0004972700013162
  5. M. Choi, D. S. Kim, and Y. H. Kim, Helicoidal surfaces with pointwise 1-type Gauss map, J. Korean Math. Soc. 46 (2009), no. 1, 215-223. https://doi.org/10.4134/JKMS.2009.46.1.215
  6. M. Choi and Y. H. Kim, Characterization of the helicoid as ruled surfaces with pointwise 1-type Gauss map, Bull. Korean Math. Soc. 38 (2001), no. 4, 753-761.
  7. M. Choi, D. S. Kim, Y. H. Kim, and D. W. Yoon, Circular cone and its Gauss map, Colloq. Math. 129 (2012), no. 2, 203-210. https://doi.org/10.4064/cm129-2-4
  8. M. Choi, Y. H. Kim, and D. W. Yoon, Classification of ruled surfaces with pointwise 1-type Gauss map in Minkowski 3-space, Taiwanese J. Math. 15 (2011), no. 3, 1141-1161. https://doi.org/10.11650/twjm/1500406291
  9. F. N. Cole, On rotations in space of four dimensions, Amer. J. Math. 12 (1890), no. 2, 191-210. https://doi.org/10.2307/2369715
  10. U. Dursun, Hypersurfaces with pointwise 1-type Gauss map, Taiwanese J. Math. 11 (2007), no. 5, 1407-1416. https://doi.org/10.11650/twjm/1500404873
  11. U. Dursun, Hypersurfaces with pointwise 1-type Gauss map in Lorentz-Minkowski space, Proc. Est. Acad. Sci. 58 (2009), no. 3, 146-161. https://doi.org/10.3176/proc.2009.3.02
  12. U. Dursun, Flat surfaces in the Euclidean space $E^3$ with pointwise 1-type Gauss map, Bull. Malays. Math. Sci. Soc. 33 (2010), no. 2, 469-478.
  13. U. Dursun and E. Coskun, Flat surfaces in the Minkowski space $E^3_1$ with pointwise 1-type Gauss map, Turk. J. Math. 36 (2012), no. 4, 613-629.
  14. U. Dursun and N. C. Turgay, General rotational surfaces in Euclidean space ${\mathbb{E}}^4$ with pointwise 1-type Gauss map, Math. Commun. 17 (2012), no. 1, 71-81.
  15. U. Dursun and N. C. Turgay, On spacelike surfaces in Minkowski 4-space with pointwise 1-type Gauss map of the second kind, Balkan J. Geom. App. 17 (2012), 34-45.
  16. U. Dursun and N. C. Turgay, Spacelike surfaces in Minkowski space ${\mathbb{E}}^4_1$ with pointwise 1-type Gauss map, submitted.
  17. U. H. Ki, D. S. Kim, Y. H. Kim, and Y. M. Roh, Surfaces of revolution with pointwise 1-type Gauss map in Minkowski 3-space, Taiwanese J. Math. 13 (2009), no. 1, 317-338. https://doi.org/10.11650/twjm/1500405286
  18. Y. H. Kim and D. W. Yoon, Ruled surfaces with pointwise 1-type Gauss map, J. Geom. Phys. 34 (2000), no. 3-4, 191-205. https://doi.org/10.1016/S0393-0440(99)00063-7
  19. Y. H. Kim and D. W. Yoon, Classification of rotation surfaces in pseudo-Euclidean space, J. Korean Math. Soc. 41 (2004), no. 2, 379-396. https://doi.org/10.4134/JKMS.2004.41.2.379
  20. Y. H. Kim and D. W. Yoon, On the Gauss map of ruled surfaces in Minkowski space, Rocky Mountain J. Math. 35 (2005), no. 5, 1555-1581. https://doi.org/10.1216/rmjm/1181069651
  21. C. L. E. Moore, Surfaces of rotation in a space of four dimensions, Ann. Math. 21 (1919), no. 2, 81-93. https://doi.org/10.2307/2007223

Cited by

  1. General Rotational Surfaces in Pseudo-Euclidean 4-Space with Neutral Metric 2016, https://doi.org/10.1007/s40840-016-0425-0