Acknowledgement
Supported by : National Natural Science Foundation of China
References
- J. A. Bondy and U. S. R. Murty, Graph Theory, the second edition, Springer, 2008.
- S. Chiba, S. Fujita, Y. Gao, and G. Li, On a sharp degree sum condition for disjoint chorded cycles in graphs, Graphs Combin. 26 (2010), no. 2, 173-186. https://doi.org/10.1007/s00373-010-0901-5
- K. Corradi and A. Hajnal, On the maximal number of independent circuits in a graph, Acta Math. Acad. Sci. Hungar. 14 (1963), 423-439. https://doi.org/10.1007/BF01895727
- G. A. Dirac, On the maximal number of independent triangles, Abh. Math. Sem. Univ. Hamburg 26 (1963), 78-82. https://doi.org/10.1007/BF02992869
- H. Enomoto, On the existence of disjoint cycles in a graph, Combinatorica 18 (1998), no. 4, 487-492. https://doi.org/10.1007/s004930050034
- D. Finkel, On the number Of independent chorded cycle in a graph, Discrete Math. 308 (2008), no. 22, 5265-5268. https://doi.org/10.1016/j.disc.2007.09.035
- Y. Gao and N. Ji, The extremal function for two disjoint cycles, Bull. Malays. Math. Sci. Soc. DOI:10.1007/s40840-014-0102-0,2014.
-
K. Kawarabayashi,
$K^-_4$ -factor in graphs, J. Graph Theory 39 (2002), no. 2, 111-128. https://doi.org/10.1002/jgt.10007 - L. Posa, On the circuits of finite graphs, Magyar Tud. Akad. Mat. Kut. Int. Kozl. 8 (1963), 355-361.
- H. Wang, On the maximum number of independent cycles in a graph, Discrete Math. 205 (1999), no. 1-3, 183-190. https://doi.org/10.1016/S0012-365X(99)00009-6