DOI QR코드

DOI QR Code

Electrical and Optical Properties of Asymmetric Dielectric/Metal/Dielectric (D/M/D) Multilayer Electrode Prepared by Radio-Frequency Sputtering for Solar Cells

  • Pandey, Rina (Interface Control Research Center, Korea Institute of Science and Technology (KIST)) ;
  • Lim, Ju Won (Interface Control Research Center, Korea Institute of Science and Technology (KIST)) ;
  • Lim, Keun Yong (Interface Control Research Center, Korea Institute of Science and Technology (KIST)) ;
  • Hwang, Do Kyung (Interface Control Research Center, Korea Institute of Science and Technology (KIST)) ;
  • Choi, Won Kook (Interface Control Research Center, Korea Institute of Science and Technology (KIST))
  • 투고 : 2014.12.19
  • 발행 : 2015.01.31

초록

Transparent and conductive multilayer thin films consisting of three alternating layers FZTO/Ag/$WO_3$ have been fabricated by radio-frequency (RF) sputtering for the applications as transparent conducting oxides and the structural and optical properties of the resulting films were carefully studied. The single layer fluorine doped zinc tin oxide (FZTO) and tungsten oxide ($WO_3$) films grown at room temperature are found to have an amorphous structure. Multilayer structured electrode with a few nm Ag layer embedded in FZTO/Ag/$WO_3$ (FAW) was fabricated and showed the optical transmittance of 87.60 % in the visible range (${\lambda}=380{\sim}770nm$), quite low electrical resistivity of ${\sim}10^{-5}{\Omega}cm$ and the corresponding figure of merit ($T^{10}/R_s$) is equivalent to $3.0{\times}10^{-2}{\Omega}^{-1}$. The resultant power conversion efficiency of 2.50% of the multilayer based OPV is lower than that of the reference commercial ITO. Asymmetric D/M/D multilayer is a promising transparent conducting electrode material due to its low resistivity, high transmittance, low temperature deposition and low cost components.

키워드

참고문헌

  1. C. G. Granqvist, "Transparent conductors as solar energy materials: A panoramic review", Sol. Energy Mater. Sol. Cells, Vol. 91, pp. 1529-1598, 2007. https://doi.org/10.1016/j.solmat.2007.04.031
  2. C. G. Granqvist and A. Hultaker, "Transparent and conducting ITO films: New developments and applications", Thin Solid Films, Vol. 411, pp. 1-5, 2002. https://doi.org/10.1016/S0040-6090(02)00163-3
  3. C. Y. Hsu, Y. C. Lin, L. M. Kao, Y. C. Lin, "Effect of deposition parameters and annealing temperature on the structure and properties of Al-doped ZnO thin films", Mater. Chem. Phys., Vol. 124, pp. 330-335, 2010. https://doi.org/10.1016/j.matchemphys.2010.06.042
  4. K. Tominaga, M. Kataoka, T. Ueda, M. Chong, Y. Shintani, and I. Mori, "Preparation of conductive ZnO:Al films by a facing target system with a strong magnetic field", Thin Solid Films, Vol. 253, pp. 9-13, 1994. https://doi.org/10.1016/0040-6090(94)90285-2
  5. H. Kim, J. S. Horwitz, S. B. Qadri, and D. B. Chrisey, "Epitaxial growth of Al-doped ZnO thin films grown by pulsed laser deposition", Thin Solid Films, Vol. 420, pp. 107-111, 2002.
  6. X. J. Wang, Q. S. Lei, W. L. Zhou, and J. Yu, "Preparation of ZnO:Al thin film on transparent TPT substrate at room temperature by RF magnetron sputtering technique", Mater. Lett., Vol. 63, pp. 1371-1373, 2009. https://doi.org/10.1016/j.matlet.2008.12.027
  7. J. Hu and R.G. Gordon, "Deposition of boron doped zinc oxide films and their electrical and optical properties", J. Electrochem. Soc., Vol. 139, pp. 2014-2022, 1992. https://doi.org/10.1149/1.2221166
  8. B. N. Pawar, S. R. Jadkar, and M. G. Takwale, "Deposition and characterization of transparent and conductive sprayed ZnO:B thin films", J. Phys. Chem. Solids, Vol. 66, pp. 1779-1782, 2005. https://doi.org/10.1016/j.jpcs.2005.08.086
  9. L. Gong, J. Lu, and Z. Ye, "Transparent and conductive Gadoped ZnO films grown by RF magnetron sputtering on polycarbonate substrate", Sol. Energy Mater. Sol. Cells, Vol. 94, pp. 937-941, 2010. https://doi.org/10.1016/j.solmat.2010.02.026
  10. Y. H. Kim, J. Jeong, K. S. Lee, B. Cheong, T. Y. Seong, and W. M. Kim, "Effect of composition and deposition temperature on the characteristics of Ga doped ZnO thin films", Appl. Surf. Sci., Vol. 257, pp. 109-115, 2010. https://doi.org/10.1016/j.apsusc.2010.06.045
  11. V. Bhosle, A. Tiwari, and J. Narayan, "Electrical properties of transparent and conducting Ga doped ZnO", J. Appl. Phys., Vol. 100, pp. 0337131-0337136, 2006.
  12. H. S. Yoon, K. S. Lee, T. S. Lee, B. Cheong, D. K. Choi, D. H. Kim, and W. M. Kim, "Properties of fluorine doped ZnO thin films deposited by magnetron sputtering", Sol. Energy Mater. Sol. Cells, Vol. 92, pp. 1366-1372, 2008. https://doi.org/10.1016/j.solmat.2008.05.010
  13. J. C. Lee, E. Park, N. G. Subramaniam, J. Lee, J. Lee, J. Lee, and T. W. Kang, "Non-metallic element (chlorine) doped Zinc oxide grown by pulsed laser deposition for application in transparent electrode", Curr. Appl. Phys., Vol. 12, pp. S80-S84, 2012.
  14. K. Ellmer and R. Mientus, "Carrier transport in polycrystalline transport conductive oxides: A comparative study of zinc oxide and indium oxide", Thin Solid Films, Vol. 516, pp. 4620-4627, 2008. https://doi.org/10.1016/j.tsf.2007.05.084
  15. J. D. Yang, I. W. Ok, J. M. Cho, D. H. Park, W. S. Shin, K.G. Kim, S. J. Moon, K. H. Yoo, and W. K. Choi, "Ag interlayered transparent conducting electrode for photovoltaic cells", Jpn. J. Appl. Phys., Vol. 21, pp. 10NE07-1, 2012.
  16. Y. S. Park, H. K. Kim, and S. W. Kim, "Thin Ag layer inserted GZO multilayer grown by roll-to-roll sputtering for flexible and transparent conducting electrodes", J. Electrochem. Soc., Vol. 157, pp. J301-J306, 2010. https://doi.org/10.1149/1.3454125
  17. P. K. Chiu, W. H. Cho, H. P. Chen, C. N. Hsiao, and J. R. Yang, "Study of a sandwich structure of transparent conducting oxide films prepared by electron beam evaporation at room temperature", Nanoscale Res. Lett., Vol. 7, p. 304, 2012. https://doi.org/10.1186/1556-276X-7-304
  18. J. D. Yang, S. H. Cho, T. W. Hong, D. I. Son, D. H. Park, K. H. Yoo, and W. K. Choi, "Organic photovoltaic's cells fabricated on a $SnO_x$/Ag/$SnO_x$ multilayer transparent conducting electrode", Thin Solid films, Vol. 520, pp. 6215-6220, 2012. https://doi.org/10.1016/j.tsf.2012.05.029
  19. Y. Y. Choi, K. H. Choi, H. Lee, H. Lee, J. W. Kang, and H. K. Kim, "Nano sized Ag inserted amorphous $ZnSnO_3$ multilayer electrodes for cost efficient inverted organic solar cells", Sol. Energy Mater. Sol. Cells, Vol. 95, pp. 1615-1623, 2011. https://doi.org/10.1016/j.solmat.2011.01.013
  20. C. C. Wu and P. S. Chen, "$TiO_x$/Ag/$TiO_x$ multilayer for application as a transparent conductive electrode and heat mirror", J Mater Sci: Mater Electron, DOI 10.1007/s10854-013-1118-1.
  21. H. K. Kim and J. W. Lim, "Flexible IZO/Ag/IZO/Ag multilayer electrode grown on a polyethylene terepthalate substrate using roll to roll sputtering", Nanoscale Res. Lett., Vol. 7, p. 67, 2012. https://doi.org/10.1186/1556-276X-7-67
  22. P. K. Chiu, C. T. Lee, D. Chiang, W. H. Cho, C. N. Hsiao, Y. Y. Chen, B. M. Huang, and J. R. Yang, "Conductive and transparent multilayer films for low temperature $TiO_2$/Ag/$SiO_2$ electrodes by E-beam evaporation with IAD", Nanoscale Res. Lett., Vol. 9, p. 35, 2014. https://doi.org/10.1186/1556-276X-9-35
  23. S. C. Han, W. S. Shin, M. S. Seo, D. Gupta, S. J. Moon, and S. H. Yoo, "Improving performance of organic solar cells using amorphous tungsten oxides as an interfacial buffer layer on transparent anodes", Org. Electron., Vol. 10, pp. 791-797, 2009. https://doi.org/10.1016/j.orgel.2009.03.016
  24. M. D. Irwin, D. B. Buchholz, A. W. Hains, R. P. H. Chang, and T. J. Marks, "p-Type semiconducting nickel oxide as an efficiency-enhancing anode interfacial layer in polymer bulk heterojunction solar cells", PNAS, Vol. 105, pp. 2783-2787, 2008. https://doi.org/10.1073/pnas.0711990105
  25. V. Shrotriya, G. Li, Y. Yao, C. W. Chu, and Y. Yang, "Transition metal oxides as the buffer layer for polymer photovoltaic cells", Appl. Phys. Lett., Vol. 10, pp. 0735081-0735083, 2006.
  26. H. Simchi, B. E. McCandless, T. Meng, and W. N. Shafarman, "Structural, optical and surface properties of $WO_3$ thin films for solar cells", J. Alloy Compd., Vol. 617, pp. 609-615, 2014. https://doi.org/10.1016/j.jallcom.2014.08.047
  27. R. Pandey, S. H. Cho, D. K. Hwang, and W. K. Choi, "Structural and electrical properties of fluorine doped zinc tin oxide thin films prepared by radio-frequency magnetron sputtering", Curr. Appl. Phys., Vol. 14, pp. 850-855, 2014. https://doi.org/10.1016/j.cap.2014.03.020
  28. H. A. Macleod, Thin-Film Optical Filters, 4th ed. (CRC Press, 2010), Chapters 2 and 9.
  29. M. Born and E. Wolf, Principles of Optics,7th ed. (Cambridge University press, New York, USA 1999), Chapters 7 and 14.
  30. H. K. Park, J. W. Kang, S. I. Na, D. Y. Kim, and H. K. Kim, "Characteristics of indium-free GZO/Ag/GZO and AZO/Ag/AZO multilayer electrode grown by dual target DC sputtering at room temperature for low-cost organic photovoltaic's", Sol. Energy Mater. Sol. Cells, Vol. 93, pp. 1994-2002, 2009. https://doi.org/10.1016/j.solmat.2009.07.016
  31. S. Vedraine, A. El Hajj, P. Torchio, and B. Lucas, "Optimized ITO-free tri-layer electrode for organic solar cells", Org. Electron., Vol. 14, pp. 1122-1129, 2013. https://doi.org/10.1016/j.orgel.2013.01.030
  32. W. Cao, Y. Zheng, Z. Li, E. Wrzesniewski, W. T. Hammond, and J. Xue, "Flexible organic solar cells using an oxide/metal/oxide trilayer as transparent electrode", Org. Electron., Vol. 13, pp. 2221-2228, 2012. https://doi.org/10.1016/j.orgel.2012.05.047
  33. S. C. Han, S. Y. Lim, H. Kim, H. Cho, and S. H. Yoo, "Versatile multilayer transparent electrodes for ITO-free and flexible organic solar cells", IEEE J. Sel. Top. Quant. Electron., Vol. 16, pp. 1656-1664, 2010. https://doi.org/10.1109/JSTQE.2010.2041637
  34. S. Das, H. W. Choi, and T. L. Alford, "Effect of Ag layer thickness on the electrical transport and optical properties of ZnO/Ag/$MoO_x$ transparent composite electrodes and their use in P3HT:$PC_{61}BM$-based organic solar cells", Mater. Lett., Vol. 133, pp. 183-185, 2014. https://doi.org/10.1016/j.matlet.2014.06.174