DOI QR코드

DOI QR Code

Design Study of a Dual-Mode Ramjet Engine with Large Backward-Facing Step

큰 후향 계단이 있는 이중 모드 램젯 엔진의 설계 연구

  • Yang, Inyoung (Engine System Research Team, Korea Aerospace Research Institute) ;
  • Lee, Yang-Ji (Engine System Research Team, Korea Aerospace Research Institute) ;
  • Lee, Kyung-Jae (Engine System Research Team, Korea Aerospace Research Institute)
  • Received : 2015.08.19
  • Accepted : 2015.11.09
  • Published : 2015.12.01

Abstract

Scaled model of a dual-mode ramjet engine with large backward-facing step, as a component of the rocket-based combined cycle engine, was designed. Design parameters were derived for this engine with the consideration of application for the rocket-based combined cycle engine. Design methodology was established for these design parameters. The design was partially verified through numerical study. Flow characteristics of the dual-mode ramjet engine with large backward-facing step was investigated experimentally. The design methodology for relevant design parameters established in this study was verified as feasible.

로켓 기반 복합 사이클 엔진의 구성 요소로서 큰 후향 계단을 가진 이중 모드 램젯 엔진의 축소 모델을 설계하였다. 로켓 기반 복합 사이클 엔진에 적용하기 위해 설계 단계에서 고려하여야 하는 인자를 도출하였고 이 설계 인자에 대한 설계 방법을 정립하였다. 이러한 방법을 통하여 설계한 모델에 대하여 전산유체해석과 공력 시험을 수행함으로써 설계 검증을 일부 수행하고 큰 후향 계단을 가진 이중 모드 램젯 엔진의 유동 특성을 파악하였으며 이 연구에서 정립한 주요 설계 인자에 대한 설계 방법이 타당함을 확인할 수 있었다.

Keywords

References

  1. Lee, K.J., Yang, I., Kim, C.T. and Yang, S.S., "Analysis of the Operation Domain of a Rocket-Based Combined Cycle Engine for a SSTO Launch Vehicle," Asian Joint Conference on Propulsion and Power 2014, Jeju, Korea, pp. 751-755, Mar. 2014.
  2. Curran. E.T. and Murthy, S.N.B., Scramjet Propulsion, Progress in Astronautics and Aeronautics 189, Reston, VA, U.S.A., p. 503, 2000.
  3. Kang, S.H., Lee, Y.J. and Yang, S.S., "Model Scramjet Engine Design for Ground Test," Journal of Korean Society of Propulsion Engineers, Vol. 11, No. 5, pp. 1-13, 2007.
  4. Billig, F.S., "Research on Supersonic Combustion," Journal of Propulsion and Power, Vol. 9, No. 4, pp. 499-514, 1993. https://doi.org/10.2514/3.23652
  5. Lee, Y.J., "Characteristics of the Hydrogen-Fueled Scramjet Engine According to the Thrust Nozzle Variation," KARI, KARI-EST-ELN-2014-012, 2014.
  6. Gruber, M.R., Nejad, A.S. and Dutton, J.C., "Compressibility Effects in Supersonic Transverse Injection Flowfields," Physics Fluids Journal, Vol. 9, No. 5, pp. 1448-1461, 1997. https://doi.org/10.1063/1.869257
  7. Lee, M.P., McMillin, B.K., Palmer, J.L. and Hanson, A., "Two-Dimensional Imaging of Combustion Phenomena in a Shock Tube Using Planar Laser-Induced Fluorescence," AIAA 29th Aerospace Sciences Meeting, Reno, NV, U.S.A., AIAA 1991-460, Jan. 1991.
  8. McDaniel, J.C. and Graves, J. Jr., "Laser-Induced Visualization of Transverse Gaseous Injection in Nonreacting Supersonic Combustor," Journal of Propulsion and Power, Vol. 4, No. 6, pp. 591-597, 1988. https://doi.org/10.2514/3.23105
  9. Abramovich, G.N., The Theory of Turbulent Jets, MIT press, Cambridge, MA, pp. 671, U.S.A., 1963.
  10. O'Brien, T.F., Starkey, R.P. and Lewis, M.J., "Quasi-One-Dimensional High-Speed Engine Model with Finite-Rate Chemistry," Journal of Propulsion and Power, Vol. 17, No. 6, pp. 1366-1374, 2001. https://doi.org/10.2514/2.5889
  11. Yang, I., Lee, Y.J., Kim, Y.M. and Lee, K.J., "Combustion Test of a Mach 5 Scramjet Engine Model," Journal of Korean Society of Propulsion Engineers, Vol. 17, No. 3, pp. 9-14, 2013. https://doi.org/10.6108/KSPE.2013.17.3.009
  12. Watrup, P.J. and Billig, F.S., "Structure of Shock Waves in Cylindrical Ducts," AIAA Journal, Vol. 11, No. 10, pp. 1404-1408, 1973. https://doi.org/10.2514/3.50600