DOI QR코드

DOI QR Code

Identification of a Novel Small Molecule Inhibitor Against SARS Coronavirus Helicase

  • Cho, Jin-Beom (Department of Bio and Nanochemistry, Kookmin University) ;
  • Lee, Jin-Moo (Department of Bio and Nanochemistry, Kookmin University) ;
  • Ahn, Hee-Chul (Department of Pharmacy, Dongguk University) ;
  • Jeong, Yong-Joo (Department of Bio and Nanochemistry, Kookmin University)
  • Received : 2015.07.22
  • Accepted : 2015.09.15
  • Published : 2015.12.28

Abstract

A new chemical inhibitor against severe acute respiratory syndrome (SARS) coronavirus helicase, 7-ethyl-8-mercapto-3-methyl-3,7-dihydro-1H-purine-2,6-dione, was identified. We investigated the inhibitory effect of the compound by conducting colorimetry-based ATP hydrolysis assay and fluorescence resonance energy transfer-based double-stranded DNA unwinding assay. The compound suppressed both ATP hydrolysis and double-stranded DNA unwinding activities of helicase with IC50 values of 8.66 ± 0.26 μM and 41.6 ± 2.3 μM, respectively. Moreover, we observed that the compound did not show cytotoxicity up to 80 μM concentration. Our results suggest that the compound might serve as a SARS coronavirus inhibitor.

Keywords

References

  1. Adedeji AO, Singh K, Calcaterra NE, DeDiego ML, Enjuanes L, Weiss S, Sarafianos SG. 2012. Severe acute respiratory syndrome coronavirus replication inhibitor that interferes with the nucleic acid unwinding of the viral helicase. Antimicrob. Agents Chemother. 56: 4718-4728. https://doi.org/10.1128/AAC.00957-12
  2. Adedeji AO, Singh K, Kassim A, Coleman CM, Elliott R, Weiss SR, et al. 2014. Evaluation of SSYA10-001 as a replication inhibitor of severe acute respiratory syndrome, mouse hepatitis, and Middle East respiratory syndrome coronaviruses. Antimicrob. Agents Chemother. 58: 4894-4898. https://doi.org/10.1128/AAC.02994-14
  3. Anand K, Ziebuhr J, Wadhwani P, Mesters JR, Hilgenfeld R. 2003. Coronavirus main proteinase (3CLpro) structure: basis for design of anti-SARS drugs. Science 300: 1763-1767. https://doi.org/10.1126/science.1085658
  4. Baykov AA, Evtushenko OA, Avaeva SM. 1988. A malachite green procedure for orthophosphate determination and its use in alkaline phosphatase-based enzyme immunoassay. Anal. Biochem. 171: 266-270. https://doi.org/10.1016/0003-2697(88)90484-8
  5. Borowski P, Schalinski S, Schmitz H. 2002. Nucleotide triphosphatase/helicase of hepatitis C virus as a target for antiviral therapy. Antiviral Res. 55: 397-412. https://doi.org/10.1016/S0166-3542(02)00096-7
  6. Holmes KV. 2003. SARS coronavirus: a new challenge for prevention and therapy. J. Clin. Invest. 111: 1605-1609. https://doi.org/10.1172/JCI18819
  7. Ivanov KA, Thiel V, Dobbe JC, van der Meer Y, Snijder EJ, Ziebuhr J. 2004. Multiple enzymatic activities associated with severe acute respiratory syndrome coronavirus helicase. J. Virol. 78: 5619-5632. https://doi.org/10.1128/JVI.78.11.5619-5632.2004
  8. Jang KJ, Lee NR, Yeo WS, Jeong YJ, Kim DE. 2008. Isolation of inhibitory RNA aptamers against severe acute respiratory syndrome (SARS) coronavirus NTPase/helicase. Biochem. Biophys. Res. Commun. 366: 738-744. https://doi.org/10.1016/j.bbrc.2007.12.020
  9. Lai MM, Cavanagh D. 1997. The molecular biology of coronaviruses. Adv. Virus Res. 48: 1-100.
  10. Lee C, Lee JM, Lee NR, Jin BS, Jang KJ, Kim DE, et al. 2009. Aryl diketoacids (ADK) selectively inhibit duplex DNA-unwinding activity of SARS coronavirus NTPase/helicase. Bioorg. Med. Chem. Lett. 19: 1636-1638. https://doi.org/10.1016/j.bmcl.2009.02.010
  11. Lee C, Lee JM, Lee NR, Kim DE, Jeong YJ, Chong Y. 2009. Investigation of the pharmacophore space of severe acute respiratory syndrome coronavirus (SARS-CoV) NTPase/helicase by dihydroxychromone derivatives. Bioorg. Med. Chem. Lett. 19: 4538-4541. https://doi.org/10.1016/j.bmcl.2009.07.009
  12. Marra MA, Jones SJ, Astell CR, Holt RA, Brooks-Wilson A, Butterfield YS, et al. 2003. The genome sequence of the SARS-associated coronavirus. Science 300: 1399-1404. https://doi.org/10.1126/science.1085953
  13. Patel SS, Donmez I. 2006. Mechanisms of helicases. J. Biol. Chem. 281: 18265-18268. https://doi.org/10.1074/jbc.R600008200
  14. Patel SS, Picha KM. 2000. Structure and function of hexameric helicases. Annu. Rev. Biochem. 69: 651-697. https://doi.org/10.1146/annurev.biochem.69.1.651
  15. Rota PA, Oberste MS, Monroe SS, Nix WA, Campagnoli R, Icenogle JP, et al. 2003. Characterization of a novel coronavirus associated with severe acute respiratory syndrome. Science 300: 1394-1399. https://doi.org/10.1126/science.1085952
  16. Stockman LJ, Bellamy R, Garner P. 2006. SARS: systematic review of treatment effects. PLoS Med. 3: e343. https://doi.org/10.1371/journal.pmed.0030343
  17. Tanner JA, Watt RM, Chai YB, Lu LY, Lin MC, Peiris JS, et al. 2003. The severe acute respiratory syndrome (SARS) coronavirus NTPase/helicase belongs to a distinct class of 5 to 3 viral helicases. J. Biol. Chem. 278: 39578-39582. https://doi.org/10.1074/jbc.C300328200
  18. Tanner JA, Zheng BJ, Zhou J, Watt RM, Jiang JQ, Wong KL, et al. 2005. The adamantane-derived bananins are potent inhibitors of the helicase activities and replication of SARS coronavirus. Chem. Biol. 12: 303-311. https://doi.org/10.1016/j.chembiol.2005.01.006
  19. Yang N, Tanner JA, Wang Z, Huang JD, Zheng BJ, Zhu N, Sun H. 2007. Inhibition of SARS coronavirus helicase by bismuth complexes. Chem. Commun. (Camb). 42: 4413-4415. https://doi.org/10.1039/b709515e
  20. Yu MS, Lee J, Lee JM, Kim Y, Chin YW, Jee JG, et al. 2012. Identification of myricetin and scutellarein as novel chemical inhibitors of the SARS coronavirus helicase, nsP13. Bioorg. Med. Chem. Lett. 22: 4049-4054. https://doi.org/10.1016/j.bmcl.2012.04.081

Cited by

  1. A Novel Chemical Compound for Inhibition of SARS Coronavirus Helicase vol.27, pp.11, 2017, https://doi.org/10.4014/jmb.1707.07073
  2. Role of IFN and Complements System: Innate Immunity in SARS-CoV-2 vol.13, pp.None, 2015, https://doi.org/10.2147/jir.s267280
  3. The G-Quadruplex/Helicase World as a Potential Antiviral Approach Against COVID-19 vol.80, pp.10, 2015, https://doi.org/10.1007/s40265-020-01321-z
  4. Drug Discovery Strategies for SARS-CoV-2 vol.375, pp.1, 2015, https://doi.org/10.1124/jpet.120.000123
  5. Chinese Therapeutic Strategy for Fighting COVID-19 and Potential Small-Molecule Inhibitors against Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) vol.63, pp.22, 2015, https://doi.org/10.1021/acs.jmedchem.0c00626
  6. A high ATP concentration enhances the cooperative translocation of the SARS coronavirus helicase nsP13 in the unwinding of duplex RNA vol.10, pp.None, 2015, https://doi.org/10.1038/s41598-020-61432-1
  7. A multi-pronged approach targeting SARS-CoV-2 proteins using ultra-large virtual screening vol.24, pp.2, 2015, https://doi.org/10.1016/j.isci.2020.102021
  8. Structural insights of key enzymes into therapeutic intervention against SARS-CoV-2 vol.213, pp.1, 2015, https://doi.org/10.1016/j.jsb.2020.107690
  9. Structure-Based Virtual Screening Identifies Multiple Stable Binding Sites at the RecA Domains of SARS-CoV-2 Helicase Enzyme vol.26, pp.5, 2015, https://doi.org/10.3390/molecules26051446
  10. Coronavirus helicases: attractive and unique targets of antiviral drug-development and therapeutic patents vol.31, pp.4, 2015, https://doi.org/10.1080/13543776.2021.1884224
  11. Human endeavor for anti-SARS-CoV-2 pharmacotherapy: A major strategy to fight the pandemic vol.137, pp.None, 2021, https://doi.org/10.1016/j.biopha.2021.111232
  12. Main Chemotypes of SARS-CoV-2 Reproduction Inhibitors vol.57, pp.5, 2015, https://doi.org/10.1134/s107042802105002x
  13. G-Quadruplexes in Neurobiology and Virology: Functional Roles and Potential Therapeutic Approaches vol.1, pp.12, 2015, https://doi.org/10.1021/jacsau.1c00451