DOI QR코드

DOI QR Code

배추 SHI-RELATED SEQUENCE 유전자 발현이 페튜니아 생장 발달에 미치는 영향

Effects of Brassica rapa SHI-RELATED SEQUENCE overexpression on petunia growth and development

  • 홍준기 (농촌진흥청 국립농업과학원) ;
  • 서은정 (농촌진흥청 국립농업과학원) ;
  • 이수영 (농촌진흥청 국립원예특작과학원 화훼과) ;
  • 송천영 (한국농수산대학 화훼학과) ;
  • 이승범 (농촌진흥청 국립농업과학원) ;
  • 김진아 (농촌진흥청 국립농업과학원) ;
  • 이수인 (농촌진흥청 국립농업과학원) ;
  • 이연희 (농촌진흥청 국립농업과학원)
  • Hong, Joon Ki (National Academy of Agricultural Science, Rural Development Administration) ;
  • Suh, Eun Jung (National Academy of Agricultural Science, Rural Development Administration) ;
  • Lee, Su Young (Floricultural Research Division, National Institute of Horticultural and Herbal Science, Rural Development Administration) ;
  • Song, Cheon Young (Department of Floriculture, Korea National College of Agriculture and Fisheries) ;
  • Lee, Seung Bum (National Academy of Agricultural Science, Rural Development Administration) ;
  • Kim, Jin A (National Academy of Agricultural Science, Rural Development Administration) ;
  • Lee, Soo In (National Academy of Agricultural Science, Rural Development Administration) ;
  • Lee, Yeon-Hee (National Academy of Agricultural Science, Rural Development Administration)
  • 투고 : 2015.06.29
  • 심사 : 2015.07.29
  • 발행 : 2015.09.30

초록

SHI-RELATED SEQUENCE (SRS) 유전자는 zinc-binding RING finger motif를 갖고있는 식물 특이적 전사인자로서 식물 생장과 발달에서 중요한 역할을 하고 있다. 배추 생장점 부위로부터 분리된 Brassica rapa SHI-RELATED SEQUENCE (BrSRS) 유전자인 BrSRS7과 BrLRP1은 식물 생장과 발달에서 중요한 조절자이다. BrSRS7과 BrLRP1 유전자가 원예작물의 생장과 발달에 미치는 영향을 보고자 35S 프로모터에 유전자를 결합시켜 두 종류의 식물 형질전환 벡터를 제작한 후 아그로박테리움을 이용하여 페튜니아에 형질전환하였다. 형질전환체들은 전체적으로 식물체 크기가 감소되었고 잎은 작으면서 upward-curled된 특성을 나타내었고 줄기 사이의 길이가 줄었다. 페튜니아의 꽃 모양은 도입된 유전자에 따라 오각형, 별 모양, 둥근 모양으로 다르게 나타났다. 이러한 특성들은 $T_2$, $T_3$ 세대진전 후에도 안정적으로 나타났다. RT-PCR로 유전자 발현을 분석한 결과 BrSRS7과 BrLRP1 유전자는 정단 분열 조직에서 형태 형성에 관여하는 지베릴린과 옥신 관련 유전자인 PtAGL15, PtIAMT1 발현을 조절함으로서 페튜니아의 생장과 발달에 중요한 역할을 하는 것으로 추측된다. 따라서 본 연구결과로 BrSRS 계열 유전자는 왜성 특성, 식물 형태 변형을 갖는 화훼 품종을 개발하는데 유용하게 이용될 수 있을 것으로 사료된다.

SHI-RELATED SEQUENCE (SRS) genes are plant-specific transcription factors that contain a zinc-binding RING finger motif, which play a critical role in plant growth and development. Among Brassica rapa SRS genes, BrSRS7 and BrLRP1 genes, isolated from shoot apical regions are important regulators of plant growth and development. In order to explore the function of BrSRS genes in horticultural plant growth and development, two constructs containing BrSRS7 and BrLRP1 under the control of a cauliflower mosaic virus 35S promoter were introduced into petunia by Agrobacterium-mediated transformation. The resulting transgenic plants were dwarf and compact plants with reduced plant height and diameter. Additionally, these transgenic plants had upward-curled leaves of narrow width and short internodes. Interestingly, the flower shapes of petunia were different among transgenic plants harboring different kinds of SRS genes. These phenotypes were stably inherited through generations $T_2$ and $T_3$. Semi-quantitative RT-PCR analyses of transgenic plants revealed that BrSRS7 and BrLRP1 regulate expression of gibberellin (GA)- and auxinrelated genes, PtAGL15- and PtIAMT1-related, involved in shoot morphogenesis. These results indicate that the overexpression of BrSRS7 and BrLRP1 genes suppressed the growth and development of petunia by regulating expression of GA- and auxin-related genes. From these data, we deduce that BrSRS7 and BrLRP1 genes play an important role in the regulation of plant growth and development in petunia. These findings suggest that transformation with the BrSRS genes can be applied to other species as a tool for growth retardation and modification of plant forms.

키워드

참고문헌

  1. Coles JP, Phillips AL, Croker SJ, Garcia-Lepe R, Lewis MJ, Hedden P (1999) Modification of gibberellin production and plant development in Arabidopsis by sense and antisense expression of gibberellin 20-oxidase genes. The Plant J 17:547-556 https://doi.org/10.1046/j.1365-313X.1999.00410.x
  2. Chandler SF, Sanchez C (2012) Genetic modification; the development of transgenic ornamental plant varieties. Plant Biotech J 10:891-903 https://doi.org/10.1111/j.1467-7652.2012.00693.x
  3. De Castro VL, Goes KP, Chiorato SH (2004) Developmental toxicity potential of paclobutrazol in the rat. Int J Environ Health Res 14:371-380 https://doi.org/10.1080/09603120400004055
  4. Eckardt NA (2002) Foolish seedlings and DELLA regulators: the functions of rice SLR1 and Arabidopsis RGL1 in GA signal transduction. Plant Cell 14:1-5 https://doi.org/10.1105/tpc.140110
  5. Eklund DM, Staldal V, Valsecchi I, Cierlik I, Eriksson C, Hiratsu K,Ohme-Takagi M, Sundstrom JF, Thelander M, Ezcurra I et al. (2010) The Arabidopsis thaliana STYLISH1 protein acts as a transcriptional activator regulating auxin biosynthesis. Plant Cell 22:349-363 https://doi.org/10.1105/tpc.108.064816
  6. Fleet CM, Sun TP (2005) A DELLAcate balance: the role of gibberellins in plant morphogenesis. Curr Opin Plant Biol 8:77-85 https://doi.org/10.1016/j.pbi.2004.11.015
  7. Fridborg I, Kuusk S, Moritz T, Sundberg E (1999) The Arabidopsis dwarf mutant shi exhibits reduced gibberellin responses conferred by overexpression of a new putative zinc finger protein. Plant Cell 11: 1019-1032 https://doi.org/10.1105/tpc.11.6.1019
  8. Fridborg I, Kuusk S, Robertson M, Sundberg E (2001) The Arabidopsis protein SHI represses gibberellin responses in Arabidopsis and barley. Plant Physiol 127:937-948 https://doi.org/10.1104/pp.010388
  9. Fu X, Sudhakar D, Peng J, Richards DE, Christou P, Harberd NP (2001) Expression of Arabidopsis GAI in transgenic rice represses multiple gibberellin responses. Plant Cell 13:1791-1802 https://doi.org/10.1105/tpc.13.8.1791
  10. Hong JK, Kim JS, Kim JA, Lee SI, Lim MH, Park BS, Lee YH (2010) Identification and characterization of SHI family genes from Brassica rapa L. ssp. Pekinensis. Genes & Genomics 32: 309-317 https://doi.org/10.1007/s13258-010-0011-z
  11. Hong JK, Kim JA, Kim, JS, Lee SI, Koo BS, Lee Y-H (2012) Overexpression of Brassica rapa SHI-RELATEDSEQUENCE genes suppresses growth and development in Arabidopsis thaliana, Biotechnology letters 34:561-156
  12. Islam MA, Lutken H, Haugslien S, Blystad D-R, Torre S, Rolcik J (2013) Overexpression of the AtSHI Gene in Poinsettia, Euphorbia pulcherrima, Results in Compact Plants, PLoS One 8: e53377 https://doi.org/10.1371/journal.pone.0053377
  13. Kazaz S, Atilla AM, Kilic S, Ersoy N (2010) Effects of day length and daminozide on the flowering, some quality parameters and chlorophyll content of Chrysanthemum morifolium Ramat. Sci Res Essays 5(21):3281-3288
  14. Kim SG, Lee S, Kim YS, Yun DJ, Woo JC, Park CM (2010) Activation tagging of an Arabidopsis SHI-RELATED SEQUENCE gene produces abnormal anther dehiscence and floral development. Plant Mol Biol 74:337-351 https://doi.org/10.1007/s11103-010-9677-5
  15. Koornneef M, Elgersma A, Hanhart CJ, van Loenen-Martinet EP, van Rijn L, Zeevaart JAD (1985) A gibberellin insensitive mutant of Arabidopsis thaliana. Physiol Plant 65:33-39 https://doi.org/10.1111/j.1399-3054.1985.tb02355.x
  16. Krysan PJ, Young JC, Sussman MichaelR (1999) T-DNA as an Insertional Mutagen in Arabidopsis. The Plant Cell 11: 2283-2290 https://doi.org/10.1105/tpc.11.12.2283
  17. Kuusk S, Sohlberg JJ, Magnus Eklund D, Sundberg E (2006) Functionally redundant SHI family genes regulate Arabidopsis gynoecium development in a dose-dependent manner. The Plant J 47:99-111 https://doi.org/10.1111/j.1365-313X.2006.02774.x
  18. Li LC, Kang DM, Chen ZL, Qu LJ (2007) Hormonal regulation of leaf morphogenesis in Arabidopsis. J Integr Plant Biol 49: 75-80 https://doi.org/10.1111/j.1744-7909.2006.00410.x
  19. Liscum L, Reed JW (2002) Genetics of Aux/IAA and ARF action in plant growth and development. Plant Mol Biol 49:387-400 https://doi.org/10.1023/A:1015255030047
  20. Lutken H, Clarke JL, Muller R (2012) Genetic engineering and sustainable production of ornamentals:current status and future directions, Plant Cell Rep 31:1141-1157 https://doi.org/10.1007/s00299-012-1265-5
  21. Lutken H, Jensen SJ, Topp SH, Mibus H, Muller R, Rasmussen SK (2010) Production of compact plants by overexpression of AtSHI in the ornamental Kalanchoe, Plant Biotechnology Journal 8:211-222 https://doi.org/10.1111/j.1467-7652.2009.00478.x
  22. Olszewski N, Sun TP, Gubler F (2002) Gibberellin signaling: Biosynthesis, catabolism, and response pathways. Plant Cell 14 (suppl.):S61-S80 https://doi.org/10.1105/tpc.010476
  23. Petty LM, Thomas B, Jackson SD, Harberd N (2001) Manipulating the gibberellin response to reduce plant height in Chrysanthemum morifolium. Acta Hortic 560:87-90
  24. Ryu H-S, Ryoo N, Jung K-H, An G, Jeon J-S (2010) Rice functional genomics using T-DNA mutants. J Plant Biotechnol 37:133-143 https://doi.org/10.5010/JPB.2010.37.2.133
  25. Topp SH, Rasmussen SK, Mibus H, Sander L (2009) A search for growth related genes in Kalanchoe blossfeldiana. Plant Physiol Biochem 47:1024-1030 https://doi.org/10.1016/j.plaphy.2009.09.006
  26. Sohlberg JJ, Myrenas M, Kuusk S, Lagercrantz U, Kowalczyk M, Sandberg G, Sundberg E (2006) STY1 regulates auxin homeostasis and affects apical-basal patterning of the Arabidopsis gynoecium. The Plant J 47:112-123 https://doi.org/10.1111/j.1365-313X.2006.02775.x
  27. Song CY (2009a) Selection of pure lines with various growth and flowering characteristics of spreading petunia, Petunia $\times$ hybrida. Flower Res J 17(2):128-136
  28. Song CY (2009b) Correlation and combining ability of plant spreading characteristics in F1 hybrid by diallel cross in Petunia hybrida. Flower Res J 17(3):179-184
  29. Sorensen MT, Danielsen V (2006) Effects of the plant growth regulator, chlormequat, on mammalian fertility. Int J Androl 29:129-133 https://doi.org/10.1111/j.1365-2605.2005.00629.x
  30. Staldal V, Sohlberg JJ, Eklund DM. Ljung K, Sundberg E (2008) Auxin can act independently of CRC, LUG, SEU, SPT and STY1 in style development but not apical-basal patterning of the Arabidopsis gynoecium. New Phytol 180:798-808 https://doi.org/10.1111/j.1469-8137.2008.02625.x
  31. Wen C-K and Chang C (2002) Arabidopsis RGL1 encodes a negative regulator of gibberellin responses. Plant Cell 14: 87-100 https://doi.org/10.1105/tpc.010325
  32. Zawaski C, Kadmiel M, Ma C, Gai Y, Jiang X, Strauss SH, Busov VB (2011) SHORT INTERNODES-like genes regulate shoot growth and xylem proliferation in Populus, New Phytologist 191:678-691 https://doi.org/10.1111/j.1469-8137.2011.03742.x
  33. Zhu LH, Li XY, Welander M (2008) Overexpression of the Arabidopsis gai gene in apple significantly reduces plant size. Plant Cell Rep 27:289-296 https://doi.org/10.1007/s00299-007-0462-0