DOI QR코드

DOI QR Code

GIS Based Advanced Positioning Technique for Mobile GPS

GIS 정보를 이용한 향상된 모바일 GPS 측위 기법

  • Jeong, Gil-Seop (Department of CCS Graduate School for Green Transportation, Korea Advanced Institute of Science and Technology) ;
  • Kong, Seung-Hyun (Department of CCS Graduate School for Green Transportation, Korea Advanced Institute of Science and Technology)
  • Received : 2015.07.17
  • Accepted : 2015.11.13
  • Published : 2015.11.30

Abstract

GIS(Geographic Information System) based Positioning technique uses geographic information to predict which satellites are visible or invisible. GPS positioning has poor positioning accuracy in dense urban area where tall buildings block the satellite signals. In this paper, we proposed GIS based Advanced Positioning technique of Mobile GPS to resolve this problem. Particularly, this technique improves positioning accuracy in dense urban area. It is consist of ephemeris and GIS server. We will inversely estimate pseudorange by using NMEA-0183 output data of mobile GPS. After that, we can find more accurate position by using ephemeris and GIS information.

GIS(Geographic Information System) 기반 측위 기법은 기존의 GPS 측위보다 향상된 측위 정확도를 갖기 위해 지리정보를 측위에 이용하는 기법이다. 차량이 높은 건물들이 많은 도심환경을 지나갈 때는 다중경로와 같은 채널환경으로 인해 GPS 측위 오차가 수백 미터에 이르기도 하는데, 제안 하는 GIS 기반 측위 기법은 특히 이러한 도심환경에서 오차를 보정할 수 있는 기법이다. 구현을 위해서는 모바일 GPS 외에 위성궤도정보(Ephemeris & Almanac) 서버와 GIS 서버가 추가로 구성된다. 본 논문에서는 제안하는 기법은 모바일 GPS의 NMEA-0183 출력 데이터를 이용하여 의사거리를 역으로 추정하고 이와 함께 항법 위성 궤도 정보와 GIS 정보를 이용하여 GIS 기반 측위기법을 통해 최종 위치를 추정한다.

Keywords

References

  1. F. V. Diggelen, A-gps: Assisted GPS, GNSS, and SBAS, Artech House, 2009.
  2. W. Gurtner and L. Estey, "RINEX: The receiver independent exchange format-version 3.00," Astronomical Institute, University of Bern and UNAVCO, Bolulder, Colorado, 2007.
  3. P. Ptasinski, F. Cecelja, and W. Balachandran, "Altitude aiding for GPS systems using elevation map datasets," J. Navigation, vol. 55, no. 03, pp. 451-462, 2002.
  4. P. D. Groves, L. Wang, and M. Ziebart, "Shadow matching: Improved GNSS accuracy in urban canyons," GPS World, vol. 23, no. 2, pp. 14-18, 2012.
  5. B. W. Park and D. H. Yoon, "A study on the DGPS service utilization for the low-cost GPS receiver module based on the correction projection algorithm," J. Korean Navig. Port Res., vol. 38, no. 2, pp. 121-126, Apr. 2014. https://doi.org/10.5394/KINPR.2014.38.2.121
  6. P. D. Groves and D. Paul, "Shadow matching: A new GNSS positioning technique for urban canyons," J. Navigation, vol. 64, no. 03, pp. 417-430, 2011. https://doi.org/10.1017/S0373463311000087
  7. S. W. Min, "Effect of path loss models for CDMA base station deployment in LOS environments," J. KICS, vol. 36, no. 1, pp. 1-7, 2011.
  8. E. Kaplan and C. Hegarty, eds., Understanding GPS: principles and applications, Artech house, 2005.
  9. P. Misra and P. Enge, Global Positioning System: Signals, Measurements and Performance Second Edition. Lincoln, MA: Ganga-Jamuna Press, 2006.
  10. S. L. Cho, et al., "Development of a GNSS signal generator considering reception environment of a vehicle," J. KICS, vol. 37, no. 9, pp. 811-820, 2012.
  11. J. H. Beak, S. S. Yoo, and S. Y. Kim, "A comparison of C/No estimation techniques for commercial GPS receivers under jamming environments," J. KICS, vol. 38, no. 11, pp. 973-975, 2013.

Cited by

  1. Robust Navigational System for a Transporter Using GPS/INS Fusion vol.65, pp.4, 2018, https://doi.org/10.1109/TIE.2017.2752137
  2. 스마트마커 연동 원반골프 경로 추적 시스템 vol.41, pp.12, 2015, https://doi.org/10.7840/kics.2016.41.12.1942
  3. IoT 기술이 적용된 스마트 플라잉 디스크 모니터링 시스템 구축 vol.14, pp.5, 2015, https://doi.org/10.13067/jkiecs.2019.14.5.991