DOI QR코드

DOI QR Code

Vehicular Cooperative Navigation Based on H-SPAWN Using GNSS, Vision, and Radar Sensors

GNSS, 비전 및 레이더를 이용한 H-SPAWN 알고리즘 기반 자동차 협력 항법시스템

  • Ko, Hyunwoo (Department of CCS Graduate School for Green Transportation, Korea Advanced Institute of Science and Technology) ;
  • Kong, Seung-Hyun (Department of CCS Graduate School for Green Transportation, Korea Advanced Institute of Science and Technology)
  • Received : 2015.07.26
  • Accepted : 2015.11.12
  • Published : 2015.11.30

Abstract

In this paper, we propose a vehicular cooperative navigation system using GNSS, vision sensor and radar sensor that are frequently used in mass-produced cars. The proposed cooperative vehicular navigation system is a variant of the Hybrid-Sum Product Algorithm over Wireless Network (H-SPAWN), where we use vision and radar sensors instead of radio ranging(i.e.,UWB). The performance is compared and analyzed with respect to the sensors, especially the position estimation error decreased about fifty percent when using radar compared to vision and radio ranging. In conclusion, the proposed system with these popular sensors can improve position accuracy compared to conventional cooperative navigation system(i.e.,H-SPAWN) and decrease implementation costs.

본 논문에서는 상용 차량에 많이 쓰이는 GNSS, 비전 센서, 레이더 센서를 이용한 협력 항법시스템을 제안하였다. 기존의 무선신호(예:UWB) 기반의 협력 항법시스템 (Hybrid-Sum Product Algorithm over Wireless Network, H-SPAWN)을 바탕으로 하여 무선신호 방식 대신 비전 센서와 레이더 센서를 모델링하여 알고리즘을 구성하였다. 모의실험을 통해, 사용하는 센서에 따른 성능을 비교분석하였으며, 특히 레이더 센서를 사용할 시 다른 두 센서(비전, UWB) 대비 최대 50%의 오차저감 효과를 보임을 확인하였다. 따라서 상용 차량에 쓰이는 센서 기반의 협력 항법시스템은 기존의 협력항법 시스템의 정확도를 향상시키면서 적용비용을 줄일 수 있는 기술이 될 수 있을 것이다.

Keywords

References

  1. P. Misra and P. Enge, Global Positioning System: Signals, Measurements, and Performance, 2nd Ed., Ganga-Jamuna Press, Lincoln, MA, 2001.
  2. D. H. Titterton and J. L. Weston, Strapdown Inertial Navigation Technology, 2nd Ed., Inst. Eng. Technol., London, U.K., 2004.
  3. S. Son, T. Kim, Y. Jeon, and Y. Baek, "Smart camera technology to support high speed video processing in vehicular network," J. KICS, vol. 40, no, 1, pp. 152-164, 2012.
  4. Y. H. Shim and Y. H. Kim, "Data dissemination in LTE-D2D based vehicular network," J. KICS, vol. 40, no. 3, pp. 602-612, 2015. https://doi.org/10.7840/kics.2015.40.3.602
  5. S. Kim, "An evaluation of the performance wireless network in vehicle communication environment," J. KICS, vol. 36, no. 10, pp. 816-822, 2011. https://doi.org/10.7840/KICS.2011.36A.10.816
  6. H. Wymeersch, J. Lien, and M. Z. Win, "Cooperative localization in wireless networks," in Proc. IEEE, vol. 97, no. 2, pp. 427-450, Feb. 2009. https://doi.org/10.1109/JPROC.2008.2008853
  7. P. K. Enge, R. M. Kalafus, and M. F. Ruane, "Differential operation of the global positioning system," IEEE Commun. Mag., vol. 26, pp. 48-60, Jul. 1988. https://doi.org/10.1109/35.7645
  8. B. Barrois, et al., "3D pose estimation of vehicles using a stereo camera," IEEE Intell. Veh. Symp. 2009, pp. 267-272, China, Jun. 2009.
  9. L. Danielsson, "Tracking and radar sensor modelling for automotive safety systems," Ph.D. Dissertation, Chalmers university of technology, 2010.
  10. J. T. Park, "Waveform design and performance analysis of automotive radar for collision avoidance," M.S. Thesis, Korea Aerospace University, 2011.
  11. F. R. Kschischang, B. J. Frey, and H. A. Loeliger, "Factor graphs and the sum-product algorithm," IEEE Trans. Inf. Theory, vol. 47, no. 2, pp. 498-519, Feb. 2001. https://doi.org/10.1109/18.910572
  12. B. Ristic and S. Arulampalam, Beyond the Kalman Filter: Particle Filters for Tracking Applications, Artech House, 2004.
  13. R. Schubert, C. Adam, M. Obst, N. Mattern, V. Leonhardt, and G. Wanielik, "Empirical evaluation of vehicular models for ego motion estimation," in Proc. IEEE Intell. Veh. Symp., pp. 534-539, Germany, Jun. 2011.