DOI QR코드

DOI QR Code

리튬이차전지 양극활물질의 암모니아 침출액에서 공침법에 의한 활물질 전구체의 합성에 대한 암모니아 농도의 영향

The Effect of NH3 Concentration during Co-precipitation of Precursors from Leachate of Lithium-ion Battery Positive Electrode Active Materials

  • 박상혁 (세종대학교 에너지자원공학과) ;
  • 구희숙 (세종대학교 에너지자원공학과) ;
  • 이경준 (전자부품연구원 차세대전지센터) ;
  • 송준호 (전자부품연구원 차세대전지센터) ;
  • 김수경 (한국지질자원연구원) ;
  • 손정수 (한국지질자원연구원) ;
  • 권경중 (세종대학교 에너지자원공학과)
  • Park, Sanghyuk (Department of Energy and Mineral Resources Engineering, Sejong University) ;
  • Ku, Heesuk (Department of Energy and Mineral Resources Engineering, Sejong University) ;
  • Lee, Kyoung-Joon (Korea Electronics Technology Institute, Advanced Batteries Research Center) ;
  • Song, Jun Ho (Korea Electronics Technology Institute, Advanced Batteries Research Center) ;
  • Kim, Sookyung (Urban Mine Department, Korea Institute of Geoscience and Mineral Resources) ;
  • Sohn, Jeongsoo (Urban Mine Department, Korea Institute of Geoscience and Mineral Resources) ;
  • Kwon, Kyungjung (Department of Energy and Mineral Resources Engineering, Sejong University)
  • 투고 : 2015.06.05
  • 심사 : 2015.10.19
  • 발행 : 2015.12.30

초록

폐리튬이차전지 양극재 재활용기술에 있어 침출과정을 통해 회수된 유가금속을 다시 원하는 조성의 전구체로 재합성하는 공침공정은 필수적이다. 본 연구에서는 고용량 특성의 Ni-rich 조성인 $LiNi_{0.6}Co_{0.2}Mn_{0.2}O_2$ (NCM 622) 양극재의 전구체 재합성 시 암모니아가 불순물로서 미치는 영향을 확인하는 공침실험을 수행하였다. SEM 및 EDS 분석결과 양극재 전구체 최적 합성조건(금속염 용액 농도 2 M 기준 암모니아수 농도 1 M)에서 암모니아 농도가 증가할수록 원하는 조성의 전구체가 제조되지 않음을 확인하였다. Ni의 설계함량인 60 mol%를 기준하여 암모니아수 농도 1 M ~ 4 M 조건에서 각각 100%, 98%, 95%, 87%에 해당하는 공침효율을 보여주었다. 또한 제조된 전구체 입자들의 구형화도, 균일도 및 크기분포특성 등의 형상학적 특징을 확인하였다.

In a recycling scheme of spent lithium ion batteries, a co-precipitation process for the re-synthesis of precursor is essential after the leaching of lithium ion battery scraps. In this study, the effect of ammonia as impurity during the co-precipitation process was investigated in order to re-synthesize a precursor of Ni-rich cathode active material $LiNi_{0.6}Co_{0.2}Mn_{0.2}O_2$ (NCM 622). As ammonia concentration increases from 1 M (the optimum condition for synthesis of the precursors based on 2 M of metal salt solution) to 4 M, the composition of obtained precursors deviates from the designed composition, most notably for Ni. The Ni co-precipitation efficiency gradually decreases from 100% to 87% when the concentration of ammonia solution increases from 1 M to 4 M. Meanwhile, the morphological properties of the obtained precursors such as sphericity, homogeneity and size distribution of particles were also investigated.

키워드

참고문헌

  1. Park, J. K. et al., 2010: Principles and applications of lithium secondary batteries, Hongrung publishing company, pp. 52-54.
  2. Sun, Y.-K. et al., 2004: Synthetic optimization of $Li[Ni_{1/3}Co_{1/3}Mn_{1/3}]O_2$ via co-precipitation, Electrochim. Acta, 50, pp. 939-948. https://doi.org/10.1016/j.electacta.2004.07.038
  3. Kim, H.-S. et al., 2013: Electrochemical performance of $Li[Ni_{0.7}Co_{0.1}Mn_{0.2}]O_2$ cathode materials using a coprecipitation method, J. Nanosci. Nanotechnol., 13, pp. 3303-3306. https://doi.org/10.1166/jnn.2013.7258
  4. Noh, M.J. and Cho, J.P., 2013: Optimized synthetic conditions of $LiNi_{0.5}Co_{0.2}Mn_{0.3}O_2$ cathode materials for high rate lithium batteries via co-precipitation method, J. Electrochem. Soc., 160, pp. A105-A111.
  5. Son, J.-T. et al., 2013: Synthesis of $Li[Ni_{0.225}Co_{0.125}Mn_{0.65}]O_2$ as a positive electrode for lithium-ion batteries by optimizing its synthesis conditions via a hydroxide coprecipitation method, J. Phys. Chem. Solids, 74, pp. 1185-1195. https://doi.org/10.1016/j.jpcs.2013.02.006
  6. Xu, S. et al., 2013: Synthesis and performance of $Li[(Ni_{1/3}Co_{1/3}Mn_{1/3})_{1-x}Mg_{x}]O_2$ prepared from spent lithium ion batteries, J. Hazard. Mater., 246-247, pp. 163-172. https://doi.org/10.1016/j.jhazmat.2012.12.028
  7. Nowak, S. et al., 2014: Effect of impurities caused by a recycling process on the electrochemical performance of $Li[Ni_{0.33}Co_{0.33}Mn_{0.33}]O_2$, J. Electroanal. Chem., 726, pp. 91-96. https://doi.org/10.1016/j.jelechem.2014.05.017
  8. Kim, S.K. et al., 2014: Recycling process of spent battery modules in used hybrid electric vehicles using physical/chemical treatments, Res. Chem. Intermed., 40, pp. 2447-2456. https://doi.org/10.1007/s11164-014-1653-2
  9. Noh, M., and Cho, J., 2013: Optimized Synthetic Conditions of $LiNi_{0.5}Co_{0.2}Mn_{0.3}O_2$ Cathode Materials for High Rate Lithium Batteries via Co-Precipitation Method, J. Electrochem. Soc., 160, pp. A105-A111.
  10. Deng, C. et al., 2008: Effect of synthesis condition on the structure and electrochemical properties of $Li[Ni_{1/3}Mn_{1/3}Co_{1/3}]O_2$ prepared by hydroxide co-precipitation method, Electrochim. Acta, 53, pp. 2441-2447. https://doi.org/10.1016/j.electacta.2007.10.025
  11. Zhang S. et al., 2010: Synthetic optimization of spherical $Li[Ni_{1/3}Mn_{1/3}Co_{1/3}]O_2$ prepared by a carbonate coprecipitation method, Powder Technol., 198, pp. 373-380. https://doi.org/10.1016/j.powtec.2009.12.002
  12. Liang L. et al., 2014: Co-precipitation synthesis of $Ni_{0.6}Co_{0.2}Mn_{0.2}(OH)_{2}$ precursor and characterization of $Ni_{0.6}Co_{0.2}Mn_{0.2}O_{2}$ cathode material for secondary lithium batteries, Electrochim. Acta, 130, pp. 82-89. https://doi.org/10.1016/j.electacta.2014.02.100
  13. Jeon H.-J. et al., 2013: Synthesis of $Lix[Ni_{0.225}Co_{0.125}Mn_{0.65}]O_{2}$ as a positive electrode for lithium-ion batteries by optimizing its synthesis conditions via a hydroxide coprecipitation method, J. Phys. Chem. Solids, 74, pp. 1185-1195. https://doi.org/10.1016/j.jpcs.2013.02.006
  14. Lee, C.K. and Kim, T.-H., 2000: Leaching of cathodic active materials from spent lithium ion battery, J. of Korean Inst. of Resources Recycling, 9, pp. 37-43.
  15. Kim, D.W. and Jang, S.T., 2013: Recovery of lithium and leaching behavior of NCM powder by carbon reductive treatment from $Li(NCM)O_2$ system secondary battery scraps, J. of Korean Inst. of Resources Recycling, 22, pp. 62-69.
  16. Lee, M.S. et al., 2014: Leaching of valuable metals from NCM cathode active materials in spent lithium-ion battery by malic acid, J. of Korean Inst. of Resources Recycling, 23, pp. 21-29.
  17. Bhuntumkomol, K., Han, K.N. and Lawson, F., 1982: The leaching behavior of nickel oxides in acid and in Ammoniacal solutions, Hydrometallurgy, 8, pp. 147-160. https://doi.org/10.1016/0304-386X(82)90041-X
  18. Das, R.P. et al., 1986: Leaching of manganese nodules in ammoniacal medium using glucose as reductant, Hydrometallurgy, 16, pp. 335-344. https://doi.org/10.1016/0304-386X(86)90008-3
  19. Rokukawa, N., 1992: Extraction of nickel, cobalt and copper from ocean cobalt crusts with ammoniacal alkaline solution, Shigen-to-sozai, 108(3), pp. 189-191.
  20. Niinae, M. et al., 1996: Preferential leaching of cobalt, nickel and copper from cobalt-rich ferromanganese crusts with ammoniacal solution using ammonium thiosulfate and ammonium sulfite as reducing agents, Hydrometallurgy, 40, pp. 111-121. https://doi.org/10.1016/0304-386X(94)00085-H
  21. Senanayake, G. et al., 2010: Comparative leaching of spent zinc-manganese-carbon batteries using sulfur dioxide in ammoniacal and sulfuric acid solutions, Hydrometallurgy, 105, pp. 36-41. https://doi.org/10.1016/j.hydromet.2010.07.004
  22. Ku, H.S. et al., 2015: Ammoniacal leaching for recovery of valuable metals from spent lithium-ion battery materials, J. of Korean Inst. of Resources Recycling, 24, pp. 44-50. https://doi.org/10.7844/kirr.2015.24.3.44
  23. Li, J. et al., 2013: High capacity $0.5Li_{2}MnO_{3}{\cdot}0.5LiNi_{0.33}Co_{0.33}Mn_{0.33}O_{2}$ cathode material via a fast co-precipitation method, Electrochim. Acta, 87, pp. 686-692. https://doi.org/10.1016/j.electacta.2012.09.024
  24. Du, K. et al., 2014: Co-precipitation synthesis of $Ni_{0.6}Co_{0.2}Mn_{0.2}(OH)_{2}$ precursor and characterization of $LiNi_{0.6}Co_{0.2}Mn_{0.2}O_{2}$ cathode material for secondary lithium batteries, Electrochim. Acta, 130, pp. 82-89. https://doi.org/10.1016/j.electacta.2014.02.100
  25. van Bommel, A. and Dahn, J.R., 2009: Synthesis of spherical and dense particles of the pure hydroxide phase $Ni_{1/3}Mn_{1/3}Co_{1/3}(OH)_{2}$, J. Electrochem. Soc., 156, A362-A365. https://doi.org/10.1149/1.3079366
  26. Hu Chuan-yue et al., 2011: Effects of synthesis conditions on layered $Li[Ni_{1/3}Co_{1/3}Mn_{1/3}]O_{2}$ positive-electrode via hydroxide co-precipitation method for lithium-ion batteries, Trans. Nonferrous Met. Soc. China., 21, 114-120. https://doi.org/10.1016/S1003-6326(11)60686-9
  27. Tang Z.X. et al., 1991: Preparation of manganese ferrite fine particles from aqueous solution, J. Stat. Phys., 146, pp. 38-52.
  28. Lee M.-H. et al., 2004: Synthetic optimization of $Li[Ni_{1/3}Co_{1/3}Mn_{1/3}]O_{2}$ via co-precipitation, Electrochim. Acta, 50, pp. 939-948. https://doi.org/10.1016/j.electacta.2004.07.038
  29. Xiang, Y., Yin, Z. and Li, X., 2014: Synthesis and characterization of manganese-, nickel-, and cobaltcontaining carbonate precursors for high capacity Li-ion battery cathodes, J. Solid State Electrochem., 18, pp. 2123-2129. https://doi.org/10.1007/s10008-014-2461-8