DOI QR코드

DOI QR Code

Computed Radiography에서 고정형 그리드와 이동형 그리드 영상의 인식률 비교

Stationary and Moving Computed Radiography Grids : Comparative Observer's Perception

  • 투고 : 2015.12.07
  • 심사 : 2015.12.25
  • 발행 : 2015.12.31

초록

고정형 그리드(stationary grid)에서 그리드 아티팩트(grid artifacts)와 모아레 아티팩트($moir{\acute{e}}$ pattern artifacts)로 인한 영상의 질의 저하와 이동형 그리드(moving grid)에서의 컷 오프 아티팩트(cut off artifacts)로 인한 영상의 질의 저하를 정량적으로 비교 평가하였다. CDRAD 팬텀(Phantom)과 두께 24 cm의 acryl Phantom을 촬영조건(X-ray exposure conditions)을 100 cm, 80 kVp, 30 mA로 하여 고정형 그리드와 이동형그리드에서 영상(X-ray imaging)을 획득하였다. CDRAD Analyser을 이용한 영상(X-ray imaging) 인식률(observer's perception)은 고정그리드에서 평균(mean) 49.36, 표준편차(standard deviation) 3.76, 최대값(max) 55.56, 최소값 38.67이었고 이동형그리드에서 평균 47.04, 편차 12.69, 최대값 55.56, 최소값 20.89이었다. 이동형 그리드보다 고정형 그리드가 인식률의 평균과 표준편차에서 더 우수하게 나타났다.

This study assessed the degradation of image quality caused by grid artifacts and $moir{\acute{e}}$ pattern artifacts in a stationary grid, and the degradation of image quality caused by cut off artifacts in a moving grid. X-ray images were acquired in a stationary grid and a moving grid with X-ray exposure conditions of 100 cm, 80 kVp, and 30 mA using a CDRAD phantom and a 24 cm thickness acrylic phantom. Observer's perception of X-ray imaging using CDRAD Analyzer was mean 49.36, standard deviation 3.76, maximum 55.56, and minimum 38.67 in the stationary grid, and 47.04, 12.69, 55.56, and 20.89, respectively, in the moving grid. The stationary grid was superior to the moving grid in terms of the mean and standard deviation of observer's perception.

키워드

참고문헌

  1. D.S. Kim, "Grid Angle Optimization and Grid Artifact Reduction in Digital Radiography Images Based on the Modulation Model", Journal of the Institute of Electronics and Information Engineers, Vol. 48, No. 3, pp.30-41, 2011.
  2. S.J. Lee, H.S. Cho, S.I. Choi, H.M. Cho, J.E.Oh, S.Y. Lee, , Y.O. Park and M.S. Lee, "Study on a moiré Artifact in the Use of Carbon Interspaced Antiscatter Grids for Digital Radiography", Journal of the Korean Society of Radiology, Vol. 2, No. 4, pp. 5-9, 2008.
  3. H.K. Hyun, S.H. Park, K.Y. Kim, H.M. Cho, and H. S. Cho, "Evaluation of Contrast-detail Characteristics of an A-Se Based Digital X-ray Imaging System", Journal of the Korean Society of Radiology, Vol. 1, No. 1, pp. 11-19, 2008.
  4. H.K. Hyun, S.H. Park, K.Y. Kim, H.M. Cho, and H. S. Cho, "Evaluation of Contrast-detail Characteristics of an A-Se Based Digital X-ray Imaging System", Journal of the Korean Society of Radiology, Vol. 1, No. 1, pp. 11-19, 2007.
  5. J.Y. Jung, H.S. Park, H.M. Cho, C.L. Lee, S.R. Nam, Y.J. Lee and H.J.Kim, "Imaging Characteristics of Computed Radiography Systems", Korean journal of medical physics, Vol. 19, No. 1, pp. 63-72, 2008.
  6. C.Y. Lin, W.J. Lee, S.J. Chen, C.H. Tsai, J.H. Lee, C.H. Chang and Y.T. Ching, "A Study of Grid Artifacts Formation and Elimination in Computed Radiographic Images", Journal of Digital Imaging, Vol. 19, No. 4, pp. 351-361, 2006. https://doi.org/10.1007/s10278-006-0630-8
  7. J.P. Hogge, C.H. Palmer, C.C. Muller, S.T. Little, D.C. Smith, P.P. Fatouros and E.S. Paredes, Quality assurance in mammography: artifact analysis, Radiographics, Vol. 19, No. 2, pp. 503-522, 1999. https://doi.org/10.1148/radiographics.19.2.g99mr13503
  8. E. Norrman, M. Gardestig, J. Persliden, H. Geijer, A clinical evaluation of the image quality computer program, CoCIQ, Journal of Digital Imaging, Vol. 18, No. 2, pp. 138-144, 2005. https://doi.org/10.1007/s10278-004-1036-0
  9. S. Rivetti, N. Lanconelli, M. Bertolini, D. Acchiappati, A new clinical unit for digital radiography based on a thick amorphous Selenium plate: Physical and psychophysical characterization, Medical Physics, Vol. 38, No. 8, pp. 4480-4488, 2011. https://doi.org/10.1118/1.3605471
  10. http://posterng.netkey.at/esr/viewing/index.php?module=viewing_pos ter&doi=10.1594/ecr2013/C-1619(2015.12.06.)