DOI QR코드

DOI QR Code

선박평형수 처리장치의 cylinder type과 groove type의 살균효과 비교 연구

A Comparison Study on the Sterilization Effect of Ballast Water with Cylinder Type and Groove Type

  • Kang, Ah-Young (Division of Civil, Environmental and Chemical Engineering, Changwon National University) ;
  • Kim, Sang-Pil (Taegwang Heavy Industry) ;
  • Kim, Young-Cheol (Korea Institute of Machinery & Materials) ;
  • Song, Ju-Yeong (Division of Civil, Environmental and Chemical Engineering, Changwon National University)
  • 투고 : 2015.10.09
  • 심사 : 2015.11.10
  • 발행 : 2015.12.30

초록

IMO에서 규제중인 선박평형수의 처리기술은 현재 대부분 화학적 처리법 및 전기적인 처리방법을 주로 이용하고 있는데 이러한 방법들은 2차오염의 위험을 가지고 있으며 이를 방지하기 위하여 추가적인 장치가 필요하다. 본 연구에서는 전단력을 활용한 물리적인 방법을 이용하여 2차 오염 없이 선박평형수를 처리하는 방법을 연구하였다. 균일장치의 원리를 이용하여 전단응력으로 균을 파쇄시키는 원리인데, 내부 실린더와 외부 실린더의 표면이 매끄러운 경우에는 미끄럼 현상이 나타나 효율적인 살균효과를 얻기가 어려워서 전단응력의 크기를 변화시키는 다양한 요인 가운데 표면의 모양을 다르게 하여 두 가지 type의 장치에 대한 살균 성능을 비교하였다. 기본 장치는 cylinder type이나, 내부 실린더와 외부 실린더에 일정 간격과 깊이로 홈을 파낸 groove type과 멸균성능을 비교하였다. 그 결과 미끄럼을 방지한 groove type에서 cylinder type보다 우수한 결과를 나타내었다.

Current ballast water treatment technologies are applying chemical or electrical treatment technology which are not free from secondary environmental pollution. The purpose of this study is to treat the ballast water by shear stress without an additional environmental pollution and to find out the optimal treatment apparatus. We tried to treat ballast water by applying shear stress with two different type of combination of inner and outer cylinder, such as non-pattern type and groove type. In the case of non-pattern type of inner and outer cylinder, sterilization effect was comparatively low because of a slip between inner and outer cylinder. But in the case of groove type of inner and outer cylinder, sterilization effect was superior to the non-pattern type. With a same revolutional speed of 8000rpm, an extinction effect was acquired in the gap of 1 mm of inner and outer cylinder at non-pattern type, but 3mm of that of groove type.

키워드

참고문헌

  1. R. R. Hermann, J. Kohler and A. E. Scheepens, Innovation in product and services in the shipping retrofit industry: a case study of ballast water treatment systems, Journal of Cleaner Production in press, 1 (2014).
  2. Y. Jung, Y. Yoon, E. Hong, M. Kwon, and J. W. Kang, Inactivation characteristics of ozone and electrolysis process for ballast water treatment using B. subtilis spores as a probe, Marine Pollution Bulletin 72(1), 71 (2013). https://doi.org/10.1016/j.marpolbul.2013.04.028
  3. N. Zhang, K. Hum B. Shan, Ballast water treatment using UV/TiO2 advanced oxidation processes: An approach to invasice species prevention, Chemical Engineering Journal 243, 7 (2014). https://doi.org/10.1016/j.cej.2013.12.082
  4. J. M. Seiden, R. B. Rivkin, Biological controls on bacterial population in ballast water during ocean transit, Marine Pollution Bulletin 78(1-2), 7 (2014). https://doi.org/10.1016/j.marpolbul.2013.09.003
  5. D. A. Wright, R. W. Gensemer and C. L. Mitchelomore, W. A. Stubblefield, Eric van Genderen, R. Dawson, C. E. O. Dawson, J. S. Bearr, Richard A. Mueller, and William J. Cooper, Shipboard trials of an ozone-based ballast water treatment system, Marine Pollution Bulletin 60(9), 1571 (2010). https://doi.org/10.1016/j.marpolbul.2010.04.010
  6. S. Banerji, B. Werschkun, and T. Hofer, Assessing the risk of ballast water treatment to human health, Regulatory Toxicology and Pharmacology 62(3), 513 (2012). https://doi.org/10.1016/j.yrtph.2011.11.002
  7. L. Maranda, A. M. Cox, R. G. Campbell, and D. C. Smith, Chlorine dioxide as a treatment for ballast water to control invasive species: Shipboard testing, Marine Pollution Bulletin 75(1-2), 76 (2013). https://doi.org/10.1016/j.marpolbul.2013.08.002
  8. IMO, international covention for the control and management of ship's. ballast Water and Sediments, on 25/09/06 accessed from website (2004).
  9. International Maritime Organization (IMO), Global ballast water management programme, on 15/01/08 accessed from http://globallast.imo.org (2008).
  10. Z. Tang, M. A. Butkus, and Y. F. Xie, Enhanced performance of crumb rubber filtration for ballast water treatment, Chemosphere 74(10), 1396 (2009). https://doi.org/10.1016/j.chemosphere.2008.11.048
  11. M. David, S. Gollasch, and E. Leppakoski, Risk assessment for exemptions from ballast water management- The Baltic Sea case study, Marine Pollution Bulletin 75(1-2), 205 (2013). https://doi.org/10.1016/j.marpolbul.2013.07.031
  12. S. Delacroix, C. Vogelsang, A. Tobiesen, and H. Liltved, Disinfection by-products and ecotoxicity of ballast water after oxidative treatment- Results and experiences from seven years of full-scale testing of ballast water management systems, Marine Pollution Bulletin 73(1), 24 (2013). https://doi.org/10.1016/j.marpolbul.2013.06.014
  13. N. Zhang, B. Ma, J. Li, and Z.Zhang, Factors affecting formation of chemical by-products during ballast water treatment based on an advanced oxidation process, Chemical Engineering Journal 231, 427 (2013). https://doi.org/10.1016/j.cej.2013.07.055
  14. N. Zhang, Y. Zhang, M. Bai, Z. Zhang, and C. Chen, Risk assessment of marine environments from ballast water discharges with laboratory scale hydroxyl radicals treatment in Tianjin Harborm China, Journal of Environmental Management 145, 122 (2014). https://doi.org/10.1016/j.jenvman.2014.06.022
  15. Y. de Lafontaine and S. P. Despatie, Performance of a biological deoxygenation process for ships' ballast water treatment under very cold water conditions, Science of the Total Environment 472, 1036 (2014). https://doi.org/10.1016/j.scitotenv.2013.11.116
  16. D. Feng, J. Shi, and D. Sun, Inactivation of microalgae in ballast water with pulse intense light treatment, Marine Pollution Bulletin 90(1-2), 299 (2015). https://doi.org/10.1016/j.marpolbul.2014.09.006
  17. A. C. Akram, S. Noman, R. M. Javid, J. P. Gizicki, E. A. Reed, S. B. Singh, A. S. Basu, F. Banno, M. Fujimoto, and J. L. Ram, Development of an automated ballast water treatment verification system utilizing fluorescein diacetate hydrolysis as a measure of treatment efficacy, Water Research 70, 404 (2015). https://doi.org/10.1016/j.watres.2014.12.009
  18. M. B. Shon, M. H. Son, J. Lee, Y. J. Son, G. H. Lee, C. H. Moon, and Y. S. Kim, The Study on the Marine Eco-toxicity and Ecological Risk of Treated Discharge Water from Ballast Water Management System Using Electrolysis, Journal of the Korean Society for Marine Environment and Energy 16(2), 88 (2013). https://doi.org/10.7846/JKOSMEE.2013.16.2.88
  19. Ministry of Oceans and Fisheries, http://www.mof.go.kr.
  20. National Fusion Research Institute, http://www.nfri.re.kr.
  21. Korea Evaluation Institute of Industrial Technology All Rights Reserved, http://keit.re.kr.
  22. Feng Qing, Xiao Qian-Lu, Velocity and shear stress profiles for tidal effected channels, Ocean Engineering 101, 172 (2015). https://doi.org/10.1016/j.oceaneng.2015.04.013