DOI QR코드

DOI QR Code

Convergence of an Iterative Algorithm for Systems of Variational Inequalities and Nonlinear Mappings in Banach Spaces

  • 투고 : 2015.04.27
  • 심사 : 2015.07.13
  • 발행 : 2015.12.23

초록

In this paper, we consider the problem of convergence of an iterative algorithm for a general system of variational inequalities, a nonexpansive mapping and an ${\eta}$-strictly pseudo-contractive mapping. Strong convergence theorems are established in the framework of real Banach spaces.

키워드

참고문헌

  1. K. Aoyama, H. Iiduka and W. Takahashi, Weak convergence of an iterative sequence for accretive operators in Banach spaces, Fixed Point Theory Appl., 2006, 2006: 35390.
  2. R. E. Bruck, Properties of fixed point sets of nonexpansive mappings in Banach spaces, Trans. Amer. Math. Soc., 179(1973), 251-262. https://doi.org/10.1090/S0002-9947-1973-0324491-8
  3. C. Byrne, A unified treatment of some iterative algorithms in signal processing and image reconstruction, Inverse Probl., 20(2008), 103-120.
  4. R. Chen, P. K. Lin and Y. Song, An approximation method for strictly pseudo-contractive mappings, Nonlinear Anal., 64(2006), 2527-2535. https://doi.org/10.1016/j.na.2005.08.031
  5. Y. J. Cho, H. Y. Zhou and G. Guo, Weak and strong convergence theorems for three-step iterations with errors for asymptotically nonexpansive mappings, Comput. Math. Appl., 47(2004), 707-717. https://doi.org/10.1016/S0898-1221(04)90058-2
  6. A. Kangtunyakarn, Fixed point theory for nonlinear mappings in Banach spaces and applications, Fixed Point Theory Appl., 2014, 2014: 108. https://doi.org/10.1186/1687-1812-2014-108
  7. S. Reich, Weak convergence theorems for nonexpansive mappings in Banach spaces, J. Math. Anal. Appl., bf 67(1979), 274-276. https://doi.org/10.1016/0022-247X(79)90024-6
  8. S. Reich, Strong convergence theorems for resolvents of accretive operators in Banach spaces, J. Math. Anal. Appl., 75(1980), 287-292. https://doi.org/10.1016/0022-247X(80)90323-6
  9. T. Suzuki, Strong convergence of Krasnoselskii and Mann's type sequences for one-parameter nonexpansive semigroups without Bochner integrals, J. Math. Anal. Appl., 305(2005), 227-239. https://doi.org/10.1016/j.jmaa.2004.11.017
  10. W. Takahashi, Nonlinear Functional Analysis-Fixed Point Theory and its Application, Yokohama Publishers Inc., Yokohama, 2000 ( in Japanese).
  11. Y. Takahashi, K. Hashimoto and M. Kato, On sharp uniform convexity, smoothness and strong type, cotype inequalities, J. Nonlinear Convex Anal., 3(2002), 267-281.
  12. A. VanderLugt, Optical Signal Processing, Wiley, New York, 2005.
  13. H. K. Xu, Inequalities in Banach spaces with applications, Nonlinear Anal., 16(1991), 1127-1138. https://doi.org/10.1016/0362-546X(91)90200-K
  14. H. K. Xu, Iterative algorithms for nonlinear operators, J. London Math. Soc., 66(2002), 240-256. https://doi.org/10.1112/S0024610702003332
  15. H. Zhou, Convergence theorems of common fixed points for a finite family of Lipschitz pseudo-contractions in Banach spaces, Nonlinear Anal., 68(2008), 2977-2983. https://doi.org/10.1016/j.na.2007.02.041
  16. H. Zhou, Convergence theorems for $\lambda$-strict pseudo-contractions in 2-uniformly smooth Banach spaces, Nonlinear Anal., 69(2008), 3160-3173. https://doi.org/10.1016/j.na.2007.09.009