DOI QR코드

DOI QR Code

Some Paranormed Difference Sequence Spaces Derived by Using Generalized Means

  • MANNA, ATANU (Department of Mathematics, Indian Institute of Technology Kharagpur) ;
  • MAJI, AMIT (Department of Mathematics, Indian Institute of Technology Kharagpur) ;
  • SRIVASTAVA, PARMESHWARY DAYAL (Department of Mathematics, Indian Institute of Technology Kharagpur)
  • 투고 : 2013.09.18
  • 심사 : 2014.04.11
  • 발행 : 2015.12.23

초록

This paper presents some new paranormed sequence spaces $X(r,s,t,p;{\Delta})$ where $X{\in}\{l_{\infty}(p),c(p),c_0(p),l(p)\}$ defined by using generalized means and difference operator. It is shown that these are complete linear metric spaces under suitable paranorms. Furthermore, the ${\alpha}$-, ${\beta}$-, ${\gamma}$-duals of these sequence spaces are computed and also obtained necessary and sufficient conditions for some matrix transformations from $X(r,s,t,p;{\Delta})$ to X. Finally, it is proved that the sequence space $l(r,s,t,p;{\Delta})$ is rotund when $p_n$ > 1 for all n and has the Kadec-Klee property.

키워드

참고문헌

  1. A. Kananthai, M. Mursaleen, W. Sanhan and S. Suantai, On property (H) and rotundity of difference sequence spaces, J. Nonlinear Convex Anal., 3(3)(2002), 401-409.
  2. A. M. Jarrah and E. Malkowsky, Ordinary, absolute and strong summability and matrix transformations, Filomat, 17(2003), 59-78.
  3. A. Wilansky, Summability through Functional Analysis, North-Holland Math. Stud., 85, Else-vier Science Publishers, Amsterdam, New York, Oxford, 1984
  4. B. Altay and F. Basar, Some paranormed Riesz sequence spaces of non-absolute type, Southeast Asian Bull. Math., 30(4)(2006), 591-608.
  5. B. Altay and F. Basar, On the paranormed Riesz sequence spaces of non-absolute type, Southeast Asian Bull. Math., 26(5)(2003), 701-715.
  6. B. Altay and F. Basar, Some paranormed sequence spaces of non-absolute type derived by weighted mean, J. Math. Anal. Appl., 319(2)(2006), 494-508. https://doi.org/10.1016/j.jmaa.2005.06.055
  7. B. Altay and F. Basar, Generalization of the sequence space l(p) derived by weighted mean, J. Math. Anal. Appl., 330(1)(2007), 174-185. https://doi.org/10.1016/j.jmaa.2006.07.050
  8. B. Choudary and S. K. Mishra, On Kothe-Toeplitz duals of certain sequence spaces and their matrix transformations, Indian J. Pure Appl. Math., 24(5)(1993), 291-301.
  9. C. Aydin and F. Basar, Some new difference sequence spaces, Appl. Math. Comput., 157(3)(2004), 677-693. https://doi.org/10.1016/j.amc.2003.08.055
  10. C. Wu, S. Chen and Y. Wang, H-property of sequence Orlicz spaces, J. Harbin Inst. Tech. Math Issue, (1985), 6-11.
  11. F. Basar and B. Altay, Matrix mappings on the space bs(p) and its ${\alpha}-,\;{\beta}-,\;{\gamma}-$ duals, Aligarh Bull. Math., 21(1)(2002), 79-91.
  12. H. Hudzik and D. Pallaschke, On some convexity property of Orlicz sequence spaces, Math. Nachr., 186(1997), 167-185.
  13. H. Kizmaz, On certain sequence spaces, Canad. Math. Bull., 24(2)(1981), 169-176. https://doi.org/10.4153/CMB-1981-027-5
  14. I. J. Maddox, Paranormed sequence spaces generated by infinite matrices, Proc. Cambridge Philos. Soc., 64(1968), 335-340. https://doi.org/10.1017/S0305004100042894
  15. K. G. Grosse-Erdmann, Matrix transformations between the sequence spaces of Maddox, J. Math. Anal. Appl., 180(1)(1993), 223-238. https://doi.org/10.1006/jmaa.1993.1398
  16. M. Basarir, Paranormed Cesaro difference sequence space and related matrix transformations, Doga Mat., 15(1)(1991), 14-19.
  17. M. Mursaleen and A. K. Noman, On generalized means and some related sequence spaces, Comput. Math. Appl., 61(4)(2011), 988-999. https://doi.org/10.1016/j.camwa.2010.12.047
  18. R. Colak, M. Et, On some generalized difference sequence spaces and related matrix transformations, Hokkaido Math. J., 26(3)(1997), 483-492. https://doi.org/10.14492/hokmj/1351258261
  19. S. T. Chen, Geometry of Orlicz spaces, Dissertationes Math. (1996), p. 356.
  20. S. Demiriz and C. Cakan, On some new paranormed sequence spaces, Gen. Math. Notes, 1(2)(2010), 26-42.
  21. S. Demiriz and C. Cakan, Some new paranormed difference sequence spaces and weighted core, Comput. Math. Appl., 64(6)(2012), 1726-1739. https://doi.org/10.1016/j.camwa.2012.01.050
  22. V. Karakaya and H. Polat, Some new paranormed sequence spaces defined by Euler and difference operators, Acta Sci. Math. (Szeged), 76(1-2)(2010), 87-100.
  23. W. Orlicz, A note on modular spaces I, Bull. Acad. Polon. Sci. Ser. Sci. Math. Astronom. Phys., 9(1961), 157-162.
  24. Y. Cui and H. Hudzik, On the Uniform Opial property in some modular sequence spaces, Func. Approx. Comment., 26(1998), 93-102.
  25. Z. U. Ahmad and M. Mursaleen, Kothe-Toeplitz duals of some new sequence spaces and their matrix maps, Publ. Inst. Math. (Beograd), 42(56)(1987), 57-61.