DOI QR코드

DOI QR Code

Diffusion Behaviors and Electrical Properties in the In-Ga-Zn-O Thin Film Deposited by Radio-frequency Reactive Magnetron Sputtering

  • Lee, Seok Ryeol (Analytical Technology Team, LG display) ;
  • Choi, Jae Ha (Analytical Technology Team, LG display) ;
  • Lee, Ho Seong (School of Materials Science and Engineering, Kyungpook National University)
  • Received : 2015.12.09
  • Accepted : 2015.12.30
  • Published : 2015.12.31

Abstract

We investigated the diffusion behaviors, electrical properties, microstructures, and composition of In-Ga-Zn-O (IGZO) oxide thin films deposited by radio frequency reactive magnetron sputtering with increasing annealing temperatures. The samples were deposited at room temperature and then annealed at 300, 400, 500, 600 and $700^{\circ}C$ in air ambient for 2 h. According to the results of time-of-flight secondary ion mass spectrometry and X-ray photoelectron spectroscopy, no diffusion of In, Ga, and Zn components were observed at 300, 400, 500, $600^{\circ}C$, but there was a diffusion at $700^{\circ}C$. However, for the sample annealed at $700^{\circ}C$, considerable diffusion occurred. Especially, the concentration of In and Ga components were similar at the IGZO thin film but were decreased near the interface between the IGZO and glass substrate, while the concentration of Zn was decreased at the IGZO thin film and some Zn were partially diffused into the glass substrate. The high-resolution transmission electron microscopy results showed that a phase change at the interface between IGZO film and glass substrate began to occur at $500^{\circ}C$ and an unidentified crystalline phase was observed at the interface between IGZO film and glass substrate due to a rapid change in composition of In, Ga and Zn at $700^{\circ}C$. The best values of electron mobility of $15.5cm^2/V{\cdot}s$ and resistivity of $0.21{\Omega}cm$ were obtained from the sample annealed at $600^{\circ}C$.

Keywords

References

  1. E. Fortunato, P. Barquinha, R. Martins, Adv. Mater. 24 (2012) 2945. https://doi.org/10.1002/adma.201103228
  2. J. S. Park, W. J. Maeng, H. S. Kim, J. S. Park, Thin Solid Films 520 (2012) 1679. https://doi.org/10.1016/j.tsf.2011.07.018
  3. H. B. Kim, H. S. Lee, Thin Solid Films 550 (2014) 504. https://doi.org/10.1016/j.tsf.2013.10.116
  4. C. H. Ahn, K. Senthil, H. K. Cho, S. Y. Lee, Sci. Rep. 3 (2013) 2737. https://doi.org/10.1038/srep02737
  5. S. Lee, D. C. Paine, Appl. Phys. Lett. 98 (2011) 262108. https://doi.org/10.1063/1.3605589
  6. S, Jeong, Y. Jeong, J. Moon, J. Phys. Chem. C 112 (2008) 11083.
  7. M. H. Kim, H. S. Lee, Solid State Electron. 96 (2014) 14. https://doi.org/10.1016/j.sse.2014.04.021
  8. N. Munzenrieder, C. Zysset, L. Petti, T. Kinkeldei, G. A. Salvatore, G. Troster, Solid State Electron. 84 (2013) 198. https://doi.org/10.1016/j.sse.2013.02.025
  9. K. Everaerts, L. Zeng, J. W. Hennek, D. I. Camacho, D. Jariwala, M. J. Bedzyk, M. C. Hersam, T. J. Marks, ACS Appl. Mater. Interfaces 5 (2013) 11884. https://doi.org/10.1021/am403585n
  10. N. Munzenrieder, P. Voser, L. Petti, C. Zysset, L. Buthe, C. Vogt, G. A. Salvatore, G. Troster, IEEE Electron Dev. Lett. 35 (2014) 69. https://doi.org/10.1109/LED.2013.2286319
  11. J. H. Kang, E. N. Cho, C. E. Kim, M. J. Lee, S. J. Lee, J. M. Myoung, I. Yun, Appl. Phys. Lett. 102 (2013) 222103. https://doi.org/10.1063/1.4809727
  12. H. Hosono, J. Non-cryst. Solids, 352 (2006) 851. https://doi.org/10.1016/j.jnoncrysol.2006.01.073
  13. K. Nomura, A. Takagi, T. Kamiya, H. Ohta, M. Hirano, H. Hosono, Jpn. J. Appl. Phys. 45 (2006) 4303. https://doi.org/10.1143/JJAP.45.4303
  14. K. Ide, Y. Kikuchi, K. Nomura, T. Kamiya, H. Hosono, Thin Solid Films 520 (2012) 3787. https://doi.org/10.1016/j.tsf.2011.10.062
  15. H. S. Shin, B. H. Ahn, Y. S. Rim, H. J. Kim, J. Inform. Display 12 ( 2011) 209. https://doi.org/10.1080/15980316.2011.621331
  16. T. Kamiya, K. Nomura, H. Hosono, Journal of Display Technology 5 (2009) 468. https://doi.org/10.1109/JDT.2009.2034559
  17. S. H. Bae, I. H. Yoo, S. K. Kang, C. Park, J. Kor. Ceram. Soc. 47 (2010) 329. https://doi.org/10.4191/KCERS.2010.47.4.329
  18. C. C. Lo, T. E. Hsieh, ESC Transactions 28 (2010) 131.
  19. D. Tahir, E. K. Lee, H. L. Kwon, S. K. Oh, H. J. Kang, S. Heo, E. H. Lee, J. G. Chung, J. C. Lee, S. Tougaard, Surf. Interface Anal. 42 (2010) 906. https://doi.org/10.1002/sia.3364
  20. Y. S. Lee, Z. M. Dai, C. I. Lin, H. C. Lin, Ceramics International 38S (2012) S595
  21. G. H. Kim, B. D. Ahn, H. S. Shin, W. H. Jeong, H. J. Kim, H. J. Kim, Appl. Phys. Lett. 94 (2009) 233501. https://doi.org/10.1063/1.3151827
  22. J. W. Park, P. S. Jeong, S. H. Choi, H. S. Lee, B. H. Kong, H. K. Cho, Jpn. J. Appl. Phys. 48 (2009) 111603. https://doi.org/10.1143/JJAP.48.111603
  23. J. R. Yim, S. Y. Jung, H. W. Yeon, J. Y. Kwon, Y. J. Lee, J. H. Lee, Y. C. Joo, Jpn. J. Appl. Phys. 51 (2012) 011401. https://doi.org/10.7567/JJAP.51.011401
  24. K. Nomura, T. Kamiya, H. Hosono, ECS Journal of Solid State Science and Technology 2 (2013) P5. https://doi.org/10.1149/2.025310jss
  25. S. H. Choi, M. K. Han, IEEE. Dev. Lett. 33 (2012) 396 https://doi.org/10.1109/LED.2011.2181320
  26. T. T. Trinh, V. D. Nguyen, K. G. Ryu, K. S. Jang, W. B. Lee, S. S. Baek, J. Raja, J. S. Yi, Semicond. Sci. Technol. 26 (2011) 085012. https://doi.org/10.1088/0268-1242/26/8/085012
  27. B. D. Ahn, H. S. Shin, G. H. Kim, J. S. Park, H. J. Kim, Jpn. J. Appl. Phys. 48 (2009) 03B019.
  28. H. S. Jeon, S. W. Na, M. R. Moon, D. G. Jung, H. S. Kim, H. J. Lee, J. Electrochem. Soc. 158 (2011) H949. https://doi.org/10.1149/1.3615534
  29. M. R. Moon, S. W. Na, H. S. Jeon, T. H. Lee, D. G. Jung, H. S. Kim, J. M. Yang, H. J. Lee, Surf. Interface Anal. 44 (2012) 1431. https://doi.org/10.1002/sia.4968