DOI QR코드

DOI QR Code

Heat Spreading Properties of CVD Diamond Coated Al Heat Sink

CVD 다이아몬드가 코팅된 알루미늄 방열판의 방열 특성

  • Yoon, Min Young (Department of Advanced Materials Engineering, Korea Polytechnic University) ;
  • Im, Jong Hwan (Department of Advanced Materials Engineering, Korea Polytechnic University) ;
  • Kang, Chan Hyoung (Department of Advanced Materials Engineering, Korea Polytechnic University)
  • 윤민영 (한국산업기술대학교 신소재공학과) ;
  • 임종환 (한국산업기술대학교 신소재공학과) ;
  • 강찬형 (한국산업기술대학교 신소재공학과)
  • Received : 2015.12.04
  • Accepted : 2015.12.30
  • Published : 2015.12.31

Abstract

Nanocrystalline diamond(NCD) coated aluminium plates were prepared and applied as heat sinks for LED modules. NCD films were deposited on 1 mm thick Al plates for times of 2 - 10 h in a microwave plasma chemical vapor deposition reactor. Deposition parameters were the microwave power of 1.2 kW, the working pressure of 90 Torr, the $CH_4/Ar$ gas ratio of 2/200 sccm. In order to enhance diamond nucleation, DC bias voltage of -90 V was applied to the substrate during deposition without external heating. NCD film was identified by X-ray diffraction and Raman spectroscopy. The Al plates with about 300 nm thick NCD film were attached to LED modules and thermal analysis was carried out using Thermal Transient Tester (T3ster) in a still air box. Thermal resistance of the module with NCD/Al plate was 3.88 K/W while that with Al plate was 5.55 K/W. The smaller the thermal resistance, the better the heat emission. From structure function analysis, the differences between junction and ambient temperatures were $12.1^{\circ}C$ for NCD/Al plate and $15.5^{\circ}C$ for Al plate. The hot spot size of infrared images was larger on NCD/Al than Al plate for a given period of LED operation. In conclusion, NCD coated Al plate exhibited better thermal spreading performance than conventional Al heat sink.

Keywords

References

  1. R. C. Eden, in Handbook of Industrial Diamonds and Diamond Films, (Eds: M. A. Prelas, G. Popovici, L. K. Biglow), Marcel Dekker, Inc., N.Y. (1997) 1073.
  2. K. Jagannadham, Solid-State Electronics 42 (1998) 2199. https://doi.org/10.1016/S0038-1101(98)00216-0
  3. D. M. Gruen, Annu. Rev. Mater. Sci. 29 (1999) 211. https://doi.org/10.1146/annurev.matsci.29.1.211
  4. J. E. Butler, A. V. Sumant, Chem. Vap. Deposition 14 (2008) 145. https://doi.org/10.1002/cvde.200700037
  5. O. Auciello, A. V. Sumant, Diamond Relat. Mater. 19 (2010) 699. https://doi.org/10.1016/j.diamond.2010.03.015
  6. Y. Qi, L. G. Hector, Jr., Phys. Rev. B. 69 (2004) 235401. https://doi.org/10.1103/PhysRevB.69.235401
  7. H. Guo, Y. Qi, X. Li, J. Appl. Phys. 107 (2010) 033722. https://doi.org/10.1063/1.3277013
  8. S. Yugo, T. Kanai, T. Kimura, T. Muto, Appl. Phys. Lett. 58 (1991) 1036. https://doi.org/10.1063/1.104415
  9. B. R. Stoner, G.-H. Ma, S. D. Wolter, J. T. Glass, Phys. Rev. B, 45B (1992) 11057.
  10. I. -S. Kim, C. H. Kang, J. Kor. Inst. Surf. Eng. 46 (2013) 29. https://doi.org/10.5695/JKISE.2013.46.1.029
  11. Mentor Graphics T3ster, http://www.mentor.com/products/mechanical/micred/t3ster/?sfm=auto_suggest 2015. 09. 12.
  12. Timage IR Pro+, http://guideinfrared.com/Plus/m_default/Cms/docDetail.php?ID=60 2015. 09. 12.
  13. P. K. Chu, L. Li, Mater. Chem. Phys. 96 (2006) 253. https://doi.org/10.1016/j.matchemphys.2005.07.048
  14. D. Y. Jung, C. H. Kang, J. Kor. Inst. Surf. Eng. 44 (2011) 131. https://doi.org/10.5695/JKISE.2011.44.4.131
  15. B.-K. Na, C. H. Kang, J. Kor. Inst. Surf. Eng. 46 (2013) 68. https://doi.org/10.5695/JKISE.2013.46.2.068
  16. D.-B. Park, J.-W. Myung, B.-K. Na, C. H. Kang, J. Kor. Inst. Surf. Eng. 46 (2013) 145. https://doi.org/10.5695/JKISE.2013.46.4.145
  17. J.-W. Myung, C. H. Kang, J. Kor. Inst. Surf. Eng. 47 (2014) 75. https://doi.org/10.5695/JKISE.2014.47.2.075
  18. J. H. Im, C. H. Kang, J. Kor. Inst. Surf. Eng. 47 (2014) 263. https://doi.org/10.5695/JKISE.2014.47.5.263
  19. Y. S. Li, Y. Tang, Q. Yang, J. Maley, R. Sammynaiken, T. Regier, C. Xiao, A. Hirose, Appl. Mater. Interf. 2 (2010) 335. https://doi.org/10.1021/am9007159
  20. Y. Tang, Y. S. Li, Q. Yang, A. Hirose, Diamond Relat. Mater. 19 (2010) 496. https://doi.org/10.1016/j.diamond.2009.12.019
  21. X. J. Li, L. L. He, Y. S. Li, Q. Yang, A. Hirose, Diamond Relat. Mater. 50 (2014) 103. https://doi.org/10.1016/j.diamond.2014.09.006

Cited by

  1. Characteristics of Thermal Radiation Pastes Containing Graphite and Carbon Nanotube vol.49, pp.2, 2016, https://doi.org/10.5695/JKISE.2016.49.2.218