DOI QR코드

DOI QR Code

The use of nanotechnology in the agriculture

  • Cicek, Semra (Department of Nano-Science and Nano-Engineering, Faculty of Engineering, Ataturk University) ;
  • Nadaroglu, Hayrunnisa (Department of Nano-Science and Nano-Engineering, Faculty of Engineering, Ataturk University)
  • 투고 : 2015.06.16
  • 심사 : 2015.12.25
  • 발행 : 2015.12.25

초록

Nanotechnology is considered the most important technological advancement in recent years, and it is utilized in all industries due to its potential applications. Almost all of the industries (food, agriculture, medicine, automotive, information and communication technologies, energy, textile, construction, etc.) reorganize their future in the light of nanotechnological developments. As the most important source of income of countries, the agriculture industry increases the use of nanotechnology products gradually as a solution to the problems encountered. Reducing the use of agricultural inputs (pesticides, herbicides, fertilizers, etc.) by increasing their efficiency utilizing nano-carriers, detecting the environmental conditions and development of the crops in the field simultaneously by making use of nanosensors, reducing the sample volume and the amount of analyte used thanks to nanoarrays, effective treatment of water resources through nano-filters, accelerating the development of crops by using nanoparticles are the prominent nanotechnological applications in the agriculture industry. This review presents information on the benefits of the recent developments in nanotechnology applications in the agriculture industry.

키워드

참고문헌

  1. Aharoni, A. and Vorst O. (2002), "DNA microarrays for functional plant genomics", Plant. Mol. Biol., 48, 99-118. https://doi.org/10.1023/A:1013734019946
  2. Ahmed, R.A. and Fekry, A.M. (2013), "Preparation and Characterization of a Nanoparticles Modified Chitosan Sensor and Its Application for the Determination of Heavy Metals from Different Aqueous Media", Int. J. Electrochem. Sci., 8, 6692-6708.
  3. Ali, M.A., Rehman, I., Iqbal, A., Din, S., Rao, A.Q., Latif, A., Samiullah, T.R., Azam, S. and Husnain, T. (2014), "Nanotechnology, a new frontier in agriculture", Adv. Life Sci., 1(3), 129-138.
  4. Allen, R. (1994), "Agriculture during the industrial revolution, 1700-1850", Econom. History Britain Since 1700, 3, 96-123.
  5. Argonide Nanoceram filters Argonide Corp. (2005), http://sbir.nasa.gov/SBIR/successes/ss/9-072text.html
  6. Arifin, D.Y., Lee, L.Y. and Wang, C.H. (2006), "Mathematical modelling and simulation of drug release from microspheres: implications to drug delivery systems", Adv. Drug. Deliv. Rev., 58, 1274-1325. https://doi.org/10.1016/j.addr.2006.09.007
  7. Bhati-Kushwaha, H., Kaur, A. and Malik, C.P. (2013), "The synthesis and role of biogenic nanoparticles in overcoming chilling stress", Indian J. Plant Sci., 2, 54-62.
  8. Bradley, E.L., Castle, L. and Chaudhry, Q. (2011), "Applications of nanomaterials in food packaging with a consideration of opportunities for developing countries", Trend. Food Sci. Technol., 22, 604-610. https://doi.org/10.1016/j.tifs.2011.01.002
  9. Brock, D.A., Douglas, T.E., Queller, D.C. and Strassmann, J.E. (2011), "Primitive agriculture in a social amoeba", Nature, 469(7330), 393-396. https://doi.org/10.1038/nature09668
  10. Bruchez, M.J., Moronne, M., Gin, P., Weiss, S. and Alivisatos, A.P. (1998), "Semiconductor nanocrystals as fluorescent biological labels", Sci., 281, 2013-2016. https://doi.org/10.1126/science.281.5385.2013
  11. Cao, Y., Lee Koo, Y.E. and Kopelman, R. (2004), "Poly(decyl methacrylate)-Based Fluorescent PEBBLE Swarm Nano- sensors for Measuring Dissolved Oxygen in Biosamples", Analyst, 129(7), 45-50. https://doi.org/10.1039/B308690A
  12. Chinnamuthu, C.R. and Boopathi, P.M. (2009), "Nanotechnology and agroecosystem", Madras. Agric. J., 96(1-6), 17-31.
  13. Corradini, E., De Moura, M.R. and Mattoso, L.H.C. (2010), "A preliminary study of the incorparation of NPK fertilizer into chitosan nanoparticles", Express Polym. Lett., 4(8), 509-515. https://doi.org/10.3144/expresspolymlett.2010.64
  14. Cui, H., Sun, C., Liu, Q., Jiang, J. and Gu, W. (2010), "Applications of nanotechnology in agrochemical formulation:perspectives, challenges and strategies", Nanoagri., Sao Pedro, Brazil.
  15. Cui, Y., Wei, Q., Park, H. and Lieber, C.M. (2001), "Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species", Science, 293(12) 89-92. https://doi.org/10.1126/science.1062711
  16. Dehkordi, E.H. and Mousavi, M. (2013), "Effect of anatase nanoparticles ($TiO_2$) on parsley seed germination (petroselinum crispum) in Vitro", Biol. Trace Elem. Res., 155, 283-286. https://doi.org/10.1007/s12011-013-9788-3
  17. DeRosa, M.C., Monreal, C., Schnitzer, M., Walsh, R. and Sultan, Y. (2010), "Nanotechnology in Fertilizers", Nat. Nanotechnol., 5, 91-94. https://doi.org/10.1038/nnano.2010.2
  18. Ditta, A. (2012), "How helpful is nanotechnology in agriculture", Adv. Nat. Sci.: Nanosci. Nanotechnol., 3(3), 033002. https://doi.org/10.1088/2043-6262/3/3/033002
  19. Ditta, A. and Arshad, M. (2015), "Applications and perspectives of using nanomaterials for sustainable plant nutrition", Nanotechnology Reviews.
  20. Ditta, A., Arshad, M. and Ibrahim, M. (2015), "Nanoparticles in Sustainable Agricultural Crop Production: Applications and Perspectives", Nanotechnology and Plant Sciences-Nanoparticles and Their Impact on Plants, Eds. M.H. Siddiqui, M.H. Al-Whaibi, F. Mohammad, Springer, Switzerland.
  21. Du, M., Guo, B. and Jia, D. (2010), "Newly emerging applications of halloysite nanotubes: a review", Polym. Int., 59(5), 574-82. https://doi.org/10.1002/pi.2754
  22. Dudo, A., Choi, D. and Scheufele, D.A. (2011), "Food nanotechnology in the news. Coverage patterns and thematic emphases during the last decade", Appetite, 56, 78-89. https://doi.org/10.1016/j.appet.2010.11.143
  23. Duran, N. and Marcato, P.D. (2013), "Nanobiotechnology perspectives. Role of nanotechnology in the food industry: a review", Int. J. Food Sci. Techno.l, 48(6), 1127-1134. https://doi.org/10.1111/ijfs.12027
  24. Ehsani, R., Khot, L.R., Sankaran, S., Maja, J.M. and Schuster, E.W. (2012), "Applications of nanomaterials in agricultural production and crop protection: A review", Crop. Protect., 35, 64-70. https://doi.org/10.1016/j.cropro.2012.01.007
  25. ElAmin, A. (2006b), "Nanocantilevers studied for quick pathogen detection", http://www.foodproductiondaily-usa.com/news/ng.asp?id
  26. ETC Group (2004), "The impact of nano-scale technologies on food and agriculture", Down On The Farm, Reymond Page.
  27. Fakruddin, M., Hossain, Z. and Afroz, H. (2012), "Prospects and applications of nanobiotechnology: a medical perspective", J. Nanobiotechnol., 10, 31-35. https://doi.org/10.1186/1477-3155-10-31
  28. Farahi, R.H., Passian, A., Tetard, L. and Thundat, T. (2012), "Critical issues in sensor science to aid food and water safety", ACS Nano, 6, 4548-4556. https://doi.org/10.1021/nn204999j
  29. Feizi, H., Amirmoradi, S., Abdollahi, F. and Pour, S.J. (2013), "Assessment of Concentrations of Nano and Bulk Iron Oxide Particles on Early Growth of Wheat (Triticum aestivum L.)", Annu. Rev. Res. Biol., 3(4), 814-824.
  30. Fraceto, L.F., De Oliveira, J.L., Campos, E.V.R., Bakshi, M. and Abhilash, P.C. (2014), "Application of nanotechnology for the encapsulation of botanical insecticides for sustainable agriculture: prospects and promises", Biotechnol. Adv., 32, 1550-1561. https://doi.org/10.1016/j.biotechadv.2014.10.010
  31. Ghorbanpour, M. (2015), "Major essential oil constituents, total phenolics and flavonoids content and antioxidant activity of Salvia officinalis plant in response to nano-titanium dioxide", Indian J. Plant Physiol., 20(3), 249-256. https://doi.org/10.1007/s40502-015-0170-7
  32. Gilman, G.P. (2006), "A simple device for arsenic removal from drinking water using hydrotalcite", Sci. Total Environ., 366, 926-931. https://doi.org/10.1016/j.scitotenv.2006.01.036
  33. Gogos, A., Knauer, K. and Bucheli, T.D. (2012), "Nanomaterials in plant protection and fertilization: current state, foreseen applications, and research priorities", J. Agric. Food Chem., 60(39), 9781-9792. https://doi.org/10.1021/jf302154y
  34. Goswami, A., Roy, I., Sengupta, S. and Debnath, N. (2010), "Novel applications of solid and liquid formulations of nanoparticles against insect pests and pathogens", Thin. Solid. Film., 519, 1252-1257. https://doi.org/10.1016/j.tsf.2010.08.079
  35. Grilloa, R., Pereira, A.E.S., Nishisaka, C.S., de Lima, R., Oehlke, K., Greiner, R. and Fraceto L.F. (2014), "Chitosan/tripolyphosphate nanoparticles loaded with paraquat herbicide: an environmentally safer alternative for weed control", J. Hazard. Mater., 278, 163-171. https://doi.org/10.1016/j.jhazmat.2014.05.079
  36. Gruere, G., Narrod, C. and Abbott, L. (2014), "Agriculture, food, and water nanotechnologies for the Poor: Opportunities and Constraints", Policy Brief 19, International Food Policy Research Institute, Washington, DC, http://www.ifpri.org/sites/default/files/publications/bp019.pdf.)
  37. Guan, H., Chi, D., Yu, J. and Li, X. (2008), "A novel photodegradable insecticide: Preparation, characterization and properties evaluation of nano-Imidacloprid", Pestic. Biochem. Physiol., 92, 83-91. https://doi.org/10.1016/j.pestbp.2008.06.008
  38. Haes A.J. and Duyne, R.P. (2004), "Preliminary studies and potential applications of localized surface plasmon resonance spectroscopy in medical diagnostics", Exp. Rev. Molecul. Diagnost., 4(4), 527-537. https://doi.org/10.1586/14737159.4.4.527
  39. Han, H., Wang, X., Liu, X., Gu, X., Chen, K. and Lu, D. (2012), "Multi-walled carbon nanotubes can enhance root elongation of wheat (Triticum aestivum) plants", J. Nanopart. Res., 14, 841-851. https://doi.org/10.1007/s11051-012-0841-5
  40. Hernandez-Viezcas, J.A., Castillo-Michel, H., Servin, A.D., Peralta-Videa, J.R. and Gardea-Torresdey, J.L. (2011), "Spectroscopic verification of zinc absorption and distribution in the desert plant Prosopis juliflora-velutina (velvet mesquite) treated with ZnO nanoparticles", Chem. Eng. J., 170, 346-352. https://doi.org/10.1016/j.cej.2010.12.021
  41. Hillie, T. and Hlophe, M. (2007), "Nanotechnology and the challenge of clean water", Nat. Nanotechnol., 2, 663-664. https://doi.org/10.1038/nnano.2007.350
  42. Hirsch, L.R., Jackson, J.B., Lee, A., Halas, N.J. and West, J.L. (2003), "A whole blood immunoassay using Gold Nano- shells", Anal. Chem., 75(23), 77-81.
  43. Hu, J., Salah, S.M., Guan, Y.J., Cao, D.D., Li, J., Aamir, N., Hu, Q.J., Hu, W.M. and Ning, M.Y. (2015), "Seed priming with polyethylene glycol regulating the physiological and molecular mechanism in rice (Oryza sativa L.) under nano-ZnO stress", Nat. Scie. Report., 5, 14278-14292. https://doi.org/10.1038/srep14278
  44. Huang, J., Li, Q., Sun, D., Lu, Y., Su, Y. and Yang, X. (2007), "Biosynthesis of silver and gold nanoparticles by novel sundried Cinnamomum camphora leaf", Nanotechnol., 18(105), 104-114.
  45. Ingale, A.G. and Chaudhari, A. (2013), "Biogenic synthesis of nanoparticles and potential applications: an eco-friendly approach", J. Nanomed. Nanotechnol., 4(2), 160.
  46. Jain, K.K. (2005), "Nanotechnology in clinical laboratory diagnostics", Clinica Chimica Acta, 358 (1-2), 37-54. https://doi.org/10.1016/j.cccn.2005.03.014
  47. Jerobin, J., Sureshkumar, R.S., Anjali, C.H., Mukherjee, A. and Chandrasekaran, N. (2012), "Biodegradable polymer based encapsulation of neem oil nano-emulsion for controlled release of Aza-A", Carbohydr. Polym., 90(4), 1750-1756. https://doi.org/10.1016/j.carbpol.2012.07.064
  48. Jo, Y.K., Kim, B.H. and Jung, G. (2009), "Antifungal activity of silver ions and nanoparticles on phytopathogenic fungi", Plant Dis., 93, 1037-1043. https://doi.org/10.1094/PDIS-93-10-1037
  49. Johnston, C.T. (2010), "Probing the nanoscale architecture of clay minerals", Clay Miner., 45(3), 245-279. https://doi.org/10.1180/claymin.2010.045.3.245
  50. Juhel, G., Batisse, E., Hugues, Q., Daly, D., van Pelt, F.N.A.M., Halloran, J.O. and Jansen, M.A.K. (2011), "Alumina nanoparticles enhance growth of Lemna minor", Aquat. Toxicol., 105, 328-336. https://doi.org/10.1016/j.aquatox.2011.06.019
  51. Karn, B., Kuiken, T. and Otto, M. (2009), "Nanotechnology and in situ remediation: A review of benefits and potential risks", Environ. Hlth. Perspect., 117(12), 1823-1831. https://doi.org/10.1289/ehp.0900793
  52. Kashyap, P.L., Xiang, X. and Heiden, P. (2015), "Chitosan nanoparticle based delivery systems for sustainable agriculture", Int. J. Biolog. Macromol., 77, 36-51. https://doi.org/10.1016/j.ijbiomac.2015.02.039
  53. Khodakovskaya, M., Dervishi, E., Mahmood, M., Xu, Y., Li, Z.R., Watanabe, F. and Biris, A.S. (2009), "Carbon nanotubes are able to penetrate plant seed coat and dramatically affect seed germination and plant growth", ACS Nano, 3(10), 3221-3227. https://doi.org/10.1021/nn900887m
  54. Kottegoda, N., Munaweera, I., Madusanka, N. and Karunaratne, V. (2011), "A green slow-release fertilizer composition based on urea-modified hydroxyapatite nanoparticles encapsulated wood", Curr. Sci., 101(1), 73-78.
  55. Kumar, A., Khan, S. and Dhawan, A. (2014). "Comprehensive molecular analysis of the responses induced by titanium dioxide nanoparticles in human keratinocyte cells", J. Trans. Toxic., 1, 28-39.
  56. Kumaravel, A. and Chandrasekaran, M. (2011), "Electrochemical determination of imidacloprid using nanosilver Nafion(R)/nanoTiO2 Nafion(R) composite modified glassy carbon electrode", Sens. Actuat. B Chem., 158, 319-326. https://doi.org/10.1016/j.snb.2011.06.028
  57. Kumari, A. and Yadav, S.K. (2014), "Nanotechnology in agri-food sector", Crit. Rev. Food Sci. Nutr., 54(8), 975-984. https://doi.org/10.1080/10408398.2011.621095
  58. Late, D.J., Chakravarty, D. and Erande, M.B. (2015), "Graphene quantum dots as enhanced plant growth regulators: effects on coriander and garlic plants", J. Sci. Food Agric., 95(13), 2772-2778. https://doi.org/10.1002/jsfa.7106
  59. Lee, J., Ahmed, S.R., Koh, K. and Park, E.Y. (2013), "Toxic chemical monitoring of agricultural bioproducts using nanomaterials-based sensors", Korean J. Chem. Eng., 30(10), 1825-1832. https://doi.org/10.1007/s11814-013-0156-y
  60. Liu, B., Li, X.Y., Li, B.L., Xu, B.Q. and Zhao, Y.L. (2009a), "Carbon nanotube based artificial water channel protein: membrane perturbation and water transportation", Nano Lett., 9(4), 1386-1394. https://doi.org/10.1021/nl8030339
  61. Liu, F., Wen, L.X., Li, Z.Z., Yu, W. and Sun, H.Y. (2006), "Porous hollow silica nanoparticles as controlled delivery system for water-soluble pesticide", Mater. Res. Bull., 41(12), 2268-2275. https://doi.org/10.1016/j.materresbull.2006.04.014
  62. Liu, Q.L., Chen, B., Wang, Q.L., Fang, X.H. and Lin, J.X. (2009b), "Carbon nanotubes as molecular transporters for walled plant cells", Nano Lett., 9(3), 1007-1010. https://doi.org/10.1021/nl803083u
  63. Liu, Q.L., Zhao, Y.Y., Wan, Y.L., Zheng, J.P., Zhang, X.J., Wang, C.R., Fang, X.H. and Lin, J.X. (2010) "Study of the inhibitory effect of water-soluble fullerenes on plant growth at the cellular level", ACS Nano, 4(10), 5743-5748. https://doi.org/10.1021/nn101430g
  64. Liu, S., Yuan, L., Yue, X., Zheng, Z. and Tang, Z. (2008), "Recent advances in nanosensors for organophosphate pesticide detection", Adv. Powder Techn., 19, 419-441. https://doi.org/10.1016/S0921-8831(08)60910-3
  65. Liu, X.M., Feng, Z.B., Zhang, F.D., Zhang, S.Q. and He, X.S. (2006), "Preparation and testing of cementing and coating nano-sub nano composites of slow/controlled release fertilizer", Agric. Sci. China, 5(9), 700-706. https://doi.org/10.1016/S1671-2927(06)60113-2
  66. Liu, X.M., Zhang, F.D., Zhang, S.Q., He, S.X., Fang, R., Feng, Z. and Wang, Y. (2005), "Responses of peanut to nano-calcium carbonate", Plant Nutr. Fertilizer Sci., 11, 3-9.
  67. Lu, C.M., Zhang, C.Y., Wen, J.Q., Wu, G.R. and Tao, M.X. (2002), "Research of the effect of nanometer materials on germination and growth enhancement of glycine max and its mechanism", Soybean Sci., 21(3), 168-171.
  68. Manzer, H.S. and Mohamed, H.A.W. (2014), "Role of nano-$SiO_2$ in germination of tomato (Lycopersicum esculentum seeds Mill)", Saudi J. Bio. Sci., 21, 13-17. https://doi.org/10.1016/j.sjbs.2013.04.005
  69. Medintz, I.L., Uyeda, H.T., Goldman, E.R. and Mattoussi, H. (2005) "Quantum dot bioconjugates for imaging, labelling and sensing", Nature Biotechnol., 4, 435-446.
  70. Muller, F., Houben, A., Barker, P., Xiao, Y., Kas, J. and Melzer, M. (2006), "Quantum dots a versatile tool in plant science", J. Nanobiotechnol., 4, 5. https://doi.org/10.1186/1477-3155-4-5
  71. Naderi, M.R. and Danesh-Shahraki, A. (2013), "Nanofertilizers and their roles in sustainable agriculture", Intl. J. Agri. Crop Sci., 5(19), 2229-2232.
  72. Nair, R., Varghese, S.H., Nair, B.G., Maekawa, T., Yoshida, Y. and Kumar, D.S. (2010), "Nanoparticulate material delivery to plants", Plant Sci., 179(3), 154-163. https://doi.org/10.1016/j.plantsci.2010.04.012
  73. Navrotsky, A. (2000), "Nanomaterials in the environment, agriculture, and technology (NEAT)", J. Nanopart Res., 2, 321-323. https://doi.org/10.1023/A:1010007023813
  74. Nejatzadeh-Barandozi, F., Darvishzadeh, F. and Aminkhani, A. (2014), "Effect of nano silver and silver nitrate on seed yield of (Ocimum basilicum L.)", Organic Med. Chem. Lett., 4(1), 1-6. https://doi.org/10.1186/2191-2858-4-1
  75. Nguyen, H.M., Hwang, I.C., Park, J.W. and Park, H.J. (2012), "Enhanced payload and photo-protection for pesticides using nanostructured lipid carriers with corn oil as liquid lipid", J. Microencapsul., 29(6), 596-604. https://doi.org/10.3109/02652048.2012.668960
  76. Noh, H., Hung, A., Choi, C., Lee, J., Kim, J., Jin, S. and Cha, J. (2008), "50 nm DNA nanoarrays generated from uniform oligonucleotide films", ACS Nano, 3, 2376-2382.
  77. Paula, H.C.B., Sombra, F.M., Cavalcante, R.F., Abreu, F.O.M.S. and de Paula, R.C.M. (2011), "Preparation and characterization of chitosan/cashew gum beads loaded with Lippia sidoides essential oil", Mater. Sci. Eng. C, 31, 173-178. https://doi.org/10.1016/j.msec.2010.08.013
  78. Perez, J.M., Simeone, F.J., Saeki, Y., Josephson, L. and Weissleder, R. (2003), "Viral-Induced self-assembly of magnetic nanoparticles allows the detection of viral particles in biological media", J. Am. Chem. Soc., 125(34), 10192-10193. https://doi.org/10.1021/ja036409g
  79. Perez-de-Luque, A. and Rubiales, D. (2009), "Nanotechnology for parasitic plant control", Pest. Manag. Sci., 65(5), 540-545. https://doi.org/10.1002/ps.1732
  80. Perlatti, B., Bergo Souza, de P.L., Fernandes da, Silva M.F., das, G., Batista, J. and Rossi, M. (2014). Polymeric nanoparticle-based insecticides: a controlled release purpose for agrochemicals, Ed. Trdan, S., Insectic-Dev Safer More Eff Technol , InTech.
  81. Peshin, R., Bandral, R.S., Zhang, W.J., Wilson, L. and Dhawan, A.K. (2009), "Integrated pest management: a global overview of history, programs and adoption", Eds. Peshin, P. and Dhawan, A.K., Integrated Pest Management: innovation-development process, Springer, Dordrecht, Netherlands.
  82. Prasad, R., Bagde, U. and Varma, A. (2012), "An overview of intellectual property rights in relation to agricultural biotechnology", Afr. J. Biotechn., 11(73), 13746-13752.
  83. Prasad, R., Kumar, V. and Prasad, K.S. (2014), "Nanotechnology in sustainable agriculture: Present concerns and future aspects", Afr. J. Biotechn., 13(6), 705-713. https://doi.org/10.5897/AJBX2013.13554
  84. Prasad, T.N.V.K.V., Sudhakar, P., Sreenivasulu, Y., Latha, P., Munaswamy, V., Raja Reddy, K., Sreeprasad, T.S., Sajanlal, P.R. and Pradeep, T. (2012), "Effect of nanoscale zinc oxide particles on the germination, growth and yield of peanut", J. Plant Nutr., 35(6), 905-927. https://doi.org/10.1080/01904167.2012.663443
  85. Qamar, Z., Nasir, I.A. and Husnain, T. (2014), "In-vitro development of Cauliflower synthetic seeds and conversion to plantlets", Adv Life Sci., 1(2), 34-41.
  86. Qureshi, A., Kang, W.P., Davidson, J.L. and Gurbuz, Y. (2009), "Review on carbon-derived, solid-state, micro and nano sensors for electrochemical sensing applications", Diam. Relat. Mater., 18, 1401-1420. https://doi.org/10.1016/j.diamond.2009.09.008
  87. Rai, M. and Ingle, A. (2012), "Role of nanotechnology in agriculture with special reference to management of insect pests", Appl. Microbiol. Biotechnol., 94, 287-293. https://doi.org/10.1007/s00253-012-3969-4
  88. Rai, V., Acharya, S. and Dey, N. (2012), "Implications of nanobiosensors in agriculture", J. Biomater. Nanobiotechnol., 3, 315-324. https://doi.org/10.4236/jbnb.2012.322039
  89. Ramalingam, C., Dasgupta, N., Ranjan, S., Mundekkad, D., Shanker, R. and Kumar, A. (2015), "Nanotechnology in agro-food: From field to plate", Food Res. Int., 69, 381-400. https://doi.org/10.1016/j.foodres.2015.01.005
  90. Samadi, N., Yahyaabadi, S. and Rezayatmand, Z. (2014), "Effect of $TiO_2$ and $TiO_2$ nanoparticle on germination, root and shoot length and photosynthetic pigments of Mentha Piperita", Inter. J. Plant Soil Sci., 3(4), 408-418. https://doi.org/10.9734/IJPSS/2014/7641
  91. Schaefer, K. (2008), Clay Nanotubes for Skin, Cosmetics & Toiletries, http://www.cosmeticsandtoiletries.com/research/techtransfer/16119562.html.
  92. Schena, M., Heller, R. and Theriault, T. (1998), "Microarrays: biotechnology's discovery platform for functional genomics", Trend. Biotechn., 16, 301-306. https://doi.org/10.1016/S0167-7799(98)01219-0
  93. Scott, N. and Chen, H. (2012), "Nanoscale science and engineering for agriculture and food systems", Ind. Biotechnol., 8(6), 340-343. https://doi.org/10.1089/ind.2012.1549
  94. Scrinis, G. and Lyons, K. (2007), "The emerging nano-corporate paradigm: nanotechnology and the transformation of nature, food and agri-food systems", Int. J. Soc. Agric. Food, 15(2), 22-24.
  95. Sedghi, M., Sheykhbaglou, R., Shishevan, M.T. and Sharifi, R.S. (2010), "Effects of nano-iron oxide particles on agronomic traits of soybean", Not. Sci. Biol., 2, 112-113. https://doi.org/10.15835/nsb224667
  96. Sharon, M., Choudhary, A.K. and Kuma, R. (2010), "Nanotechnology in agricultural diseases and food safety", J. Phytology., 2(4), 83-92.
  97. Somers, R.C., Bawendi, M.G. and Nocera, D.G. (2007), "CdSe nanocrystal based chem/bio sensors", Chem. Soc. Rev., 36, 579-591. https://doi.org/10.1039/b517613c
  98. Sonkaria, S., Ahn, S.H. and Khare, V. (2012), "Nanotechnology and its impact on food and nutrition: a review", Recent Pat. Food Nutr. Agric., 4(1), 8-18. https://doi.org/10.2174/1876142911204010008
  99. Soto Garcia, P., Moreau, A.L.D., Magalhaes Ierich, J.C., Araujo Vig, A.C., Higa, A.M., Oliveira, G.S., Camargo Abdalla, F., Hausen, M. and Leite, F.L. (2015), "A nanobiosensor based on 4-hydroxyphenylpyruvate dioxygenase enzyme for mesotrione detection", Sens. J., IEEE, 15(4), 2106 - 2113 https://doi.org/10.1109/JSEN.2014.2371773
  100. Su, S., He, Y., Zhang, M., Yang, K., Song, S., Zhang, X., Fan, C. and Lee, S.T. (2008), "High-sensitivity pesticide detection via silicon nanowires-supported acetylcholinesterase-based electrochemical sensors", Appl. Phys. Lett., 93, 023113-1-023113-3. https://doi.org/10.1063/1.2959827
  101. Teodoro, S., Micaela, B. and David, K.W. (2010), "Novel use of nano-structured alumina as an insecticide", Pest. Manag. Sci., 66(6), 577-579. https://doi.org/10.1002/ps.1915
  102. Tramon, C. (2014), "Modelling the controlled release of essential oils from a polymer matrixa special case", Indus Crops Product, 61, 23-30. https://doi.org/10.1016/j.indcrop.2014.06.023
  103. Wu, L., Liu, M. and Liang, R. (2008), "Preparation and properties of a double-coated slow-release NPK compound fertilizer with superabsorbent and water-retention", Bioresour. Technol., 99, 547-554. https://doi.org/10.1016/j.biortech.2006.12.027
  104. Yan, J., Estevez, C., Smith, J.E., Wang, K., He, X., Wang, L. and Tan, W. (2007), "Dye doped nanoparticles for bioanalysis", Nano Today, 2, 44-50.
  105. Yavuz, C.T., Mayo, J.T., Yu, W.W., Prakash, A., Falkner, J.C. and Yean, S. (2006), "Low-field magnetic separation of monodisperse $Fe_3O_4$ nanocrystals", Sci., 314, 964-967. https://doi.org/10.1126/science.1131475
  106. Zambrano-Zaragoza, M.L., Mercado-Silva, E., Gutierrez-Cortez, E., Castano-Tostado, E. and Quintanar-Guerrero, D. (2011), "Optimization of nanocapsules preparation by the emulsionediffusion method for food applications", LWT-Food Sci. Technol., 44, 1362-1368. https://doi.org/10.1016/j.lwt.2010.10.004
  107. Zezzi Arruda, M.A., Azevedo, R.A., Galazzi, R.M., Silva, A.L.D. and Arruda, S.C.C. (2015), "Nanoparticles applied to plant science: a review", Talanta, 131, 693-705. https://doi.org/10.1016/j.talanta.2014.08.050
  108. Zhao, X., Tapec-Dytioco, R. and Tan, W. (2003), "Ultrasensitive DNA detection using highly fluorescent bioconjugated nanoparticles", Acs. Jacs., 125, 11474-11475. https://doi.org/10.1021/ja0358854
  109. Zheng, L., Hong, F., Lu, S. and Liu, C. (2005), "Effect of nano-$TiO_2$ on strength of naturally aged seeds and growth of Spinach", Biol. Trace Elem. Res., 105, 83-91.
  110. Ziegler, C. (2004), "Cantilever-based biosensors", Anal. Bioanal. Chem., 379, 7(8), 946-959. https://doi.org/10.1007/s00216-004-2694-y

피인용 문헌

  1. Green synthesis of Ce2O3 NPs and determination of its antioxidant activity vol.11, pp.4, 2017, https://doi.org/10.1049/iet-nbt.2016.0138
  2. Natural Poly- and Oligosaccharides as Novel Delivery Systems for Plant Protection Compounds vol.65, pp.31, 2017, https://doi.org/10.1021/acs.jafc.7b02591
  3. Chitosan nanoparticles preparation and applications 2017, https://doi.org/10.1007/s10311-017-0670-y
  4. Testing the Insecticidal Activity of Nanostructured Alumina on Sitophilus oryzae (L.) (Coleoptera: Curculionidae) Under Laboratory Conditions Using Galvanized Steel Containers vol.9, pp.3, 2018, https://doi.org/10.3390/insects9030087
  5. State of the art of polymeric nanoparticles as carrier systems with agricultural applications: a minireview vol.3, pp.3, 2018, https://doi.org/10.1007/s40974-018-0090-2
  6. Nanobiotechnology in Agricultural Sector: Overview and Novel Applications vol.10, pp.2, 2015, https://doi.org/10.4236/jbnb.2019.102007
  7. Arabinogalactan and glycyrrhizin based nanopesticides as novel delivery systems for plant protection vol.27, pp.6, 2015, https://doi.org/10.1007/s11356-019-07397-9
  8. Composites of Biopolymers and ZnO NPs for Controlled Release of Zinc in Agricultural Soils and Timed Delivery for Maize vol.3, pp.3, 2015, https://doi.org/10.1021/acsanm.9b01492
  9. Effect of silver and silica nanoparticles on the larvae of pink stem borer Sesamia cretica Lederer, 1857 (Lepidoptera: Noctuidae) and maize plants Zea mays Linneaus, 1753 vol.90, pp.2, 2015, https://doi.org/10.5604/01.3001.0014.9174
  10. Chitosan nanoparticles as a rice growth promoter: evaluation of biological activity vol.204, pp.1, 2022, https://doi.org/10.1007/s00203-021-02669-w