DOI QR코드

DOI QR Code

미래 교통환경 변화에 대응하는 교통 모의실험 모형 설계 방향

Considerations on a Transportation Simulation Design Responding to Future Driving

  • 김형수 (한국건설기술연구원 도로연구소) ;
  • 박범진 (한국건설기술연구원 도로연구소)
  • Kim, Hyoungsoo (Korea Institute of Civil Engineering and Building Technology) ;
  • Park, Bumjin (Korea Institute of Civil Engineering and Building Technology)
  • 투고 : 2015.09.21
  • 심사 : 2015.12.28
  • 발행 : 2015.12.31

초록

최근 첨단기술의 발전은 교통환경에 커다란 변화를 일으키고 있다. 지능형교통시스템(ITS), 자율주행차량 등은 도로 및 자동차는 물론 운전자까지 정보화, 지능화, 자동화하여 안전하고 효율적인 교통운영에 공헌하고 있다. 본 연구에서는 첨단기술의 도입으로 변화하는 미래 교통환경을 위한 모의실험 모형 설계시 고려해야 하는 사항을 제안하였다. 우선 거시적인 설계 방향으로 현실 유사성, 모형 수용성, 규모 확장성을 제안하고 각각에 대한 구체적 고려사항을 나열하였다. 현실에 유사한 실험을 위하여 정산(calibration) 기능이 중요하며, 통신 특성을 위하여 물리 계층(physical layer) 및 맥 계층(MAC layer)에서 발생하는 현상을 구현하여야 한다. 미래의 새로운 교통환경 실험을 수용하려면 API 등 다른 모형의 추가적인 결합을 위한 인터페이스가 고려되어야 한다. 예측하기 어려운 미래 교통환경을 위한 모의실험 모형은 많은 기능을 내재한 거대한 구성보다는 호환 중심의 설계가 필요하며, 실험 규모 확장을 위하여 H/W와 S/W는 함께 최적화되어야 한다. 본 연구의 결과는 미래 교통환경의 모의실험 모형 설계시 가이드라인으로 활용될 것으로 기대된다.

Recent proliferation of advanced technologies such as wireless communication, mobile, sensor technology and so on has caused significant changes in a traffic environment. Human beings, in particular drivers, as well as roads and vehicles were advanced on information, intelligence and automation thanks to those advanced technologies; Intelligent Transport Systems (ITS) and autonomous vehicles are the results of changes in a traffic environment. This study proposed considerations when designing a simulation model for future transportation environments, which are difficult to predict the change by means of advanced technologies. First of all, approximability, flexibility and scalability were defined as a macroscopic concept for a simulation model design. For actual similarity, calibration is one of the most important steps in simulation, and Physical layer and MAC layer should be considered for the implementation of the communication characteristics. Interface, such as API, for inserting the additional models of future traffic environments should be considered. A flexible design based on compatibility is more important rather than a massive structure with inherent many functions. Distributed computing with optimized H/W and S/W together is required for experimental scale. The results of this study are expected to be used to the design of future traffic simulation.

키워드

참고문헌

  1. United States Department of Transportation, Connected Vehicle Research in the United States(2015), Retrieved on Dec. 1, 2015, from www.its.dot.gov/connected_vehicle/connected_vehicle_research.htm.
  2. Google, A first drive - google self-driving car project(2014), Retrieved on Dec. 1, 2015, from www.youtube.com/watch?v=CqSDWoAhvLU.
  3. National Highway Traffic Safety Administration, U.S. Department of Transportation Releases Policy on Automated Vehicle Development(2013), Retrieved on Dec. 1, 2015, from www.nhtsa.gov/About+NHTSA/Press+Releases/U.S.+Department+of+Transportation+Releases+Policy+on+Automated+Vehicle+Development.
  4. European Technology Platform on Smart Systems Integration, European Roadmap Smart Systems for Automated Driving(2015), Retrieved on Dec. 1, 2015, from www.smart-systems-integration.org/public/documents/publications/EPoSS%20Roadmap_Smart%20Systems%20for%20Automated%20Drivin g_V2_April%202015.pdf.
  5. X. Yang, Assessment a self-organizing distributed traffic information system: modeling and simulation, Ph. D. dissertation, University of California, Irvine, US, 2003.
  6. H. Wu, R. Fujimoto, G. Riley and M. Hunter, "Spatial Propagation of Information in vehicular networks," IEEE Transaction on Vehicular Technology, vol. 58, no. 1, pp.420-431, 2009. https://doi.org/10.1109/TVT.2008.923689
  7. L. Wischhof, A. Ebner, and H. Rohling, "Information dissemination in self-organizing intervehicle networks," IEEE Transactions on ITS, vol. 6, no. 1, pp.90-101, 2005.
  8. H. Yang, Properties, simulation and applications of inter-vehicle communication systems, Ph. D. dissertation, University of California, Irvine, US, 2013.
  9. M. Saito, J. Tsukamoto, T. Umedu and T. Higashino, "Design and Evaluation of Intervehicle Dissemination Protocol for Propagation of Preceding Traffic Information," IEEE Transactions on ITS, vol. 8, no. 3, pp.379-390, 2007.
  10. S. Joerer, M. Segata, B. Bloessl, R. Lo Cigno, C. Sommer and F. Dressler, "A Vehicular Networking Perspective on Estimating Vehicle Collision Probability at Intersections," IEEE Transactions on Vehicular Technology, vol. 63, no. 4, pp.1802 -1812, 2014. https://doi.org/10.1109/TVT.2013.2287343
  11. C. Sommer, R. German and F. Dressler, "Bidirectionally Coupled Network and Road Traffic Simulation for Improved IVC Analysis," IEEE Transactions on Mobile Computing, vol. 10, no. 1, pp.3-15, 2011. https://doi.org/10.1109/TMC.2010.133
  12. Institute of Transportation Systems, SUMO- Simulation of Urban MObility(2015), Retrieved on Dec. 1, 2015, from www.dlr.de/ts/en/desktopdefault.aspx/tabid-9883/16931_read-41000.
  13. J. Lee and K. Ozbay, "New Calibration Methodology for Microscopic Traffic Simulation Using Enhanced Simultaneous Perturbation Stocha- stic Approximation Approach," Transportation Research Record: Journal of Transportation Research Board, no. 2124, pp.233-240, 2009.
  14. F. Martinez, C.K. Toh, J-C Cano, C.T. Calafate and P. Manzoni, "A survey and comparative study of simulators for vehicular ad hoc networks (VANETs)," Wireless Communications and Mobile Computing, vol. 11, no. 7, pp.813-828, 2011. https://doi.org/10.1002/wcm.859
  15. P. Knight, A. Corder, R. Liedel, J. Giddens, R. Drake, C. Jenkins and P. Agarwal, "Evaluation of Run Time Infrastructure (RTI) Implementations," The Journal of Defense Modeling and Simulation: Applications, Methodology, Technology, Retrieved on Dec. 1, 2015.