DOI QR코드

DOI QR Code

Apparatus for Comparing Thermal Conductivity of Nanofluids and Base Fluid Using Simultaneously Measured Resistance Variation Signals from Two Hot Wire Sensors

동시에 측정된 두 열선센서의 저항변화 신호를 이용한 나노유체와 기본유체의 열전도율 비교장치

  • 이신표 (경기대학교 공과대학 기계시스템공학과)
  • Received : 2014.05.12
  • Accepted : 2014.10.02
  • Published : 2015.01.01

Abstract

Exact comparisons of the thermal conductivities of the base fluid and a nanofluid are very important in the early stages of nanofluid development. A simple procedure of measuring the thermal conductivity of the two fluids by the transient hot wire method and numerically dividing these values is used for this purpose. However, because the experiments are not performed simultaneously and the physical properties of the measurement system are sometimes not properly known, large errors are incurred during the evaluation process. This article proposes a new apparatus for thermal conductivity comparison where the working principle is mainly based on relative measurement rather than absolute measurement. The measuring circuit and data processing steps are explained in detail; a validation test was performed using the well-known glycerine and engine oil.

나노유체 개발 초기단계에서 기본유체 대비 제조한 나노유체의 열전도율이 얼마나 상승했는지 그 값을 정확히 비교하는 것이 중요하다. 지금까지는 기본유체와 나노유체의 열전도율을 비정상열선법으로 별도 측정한 후 수치적으로 나누어 비교하는 단순한 방법을 사용하였다. 이 때 두 유체의 열전도율 측정이 동시에 이루어지지 않고 절대측정방법의 특성상 측정시스템의 관련 수치들이 정확히 사용되지 않으면 개별 열전도율에 나타나는 오차를 피할 수 없다. 본 연구에서는 비교대상인 두 유체를 동시에 사용하여 열전도율 비를 상대적으로 측정하는 새로운 방법을 제시하였다. 기존 비정상열선법 회로를 변형한 측정회로와 데이터 처리과정을 자세히 설명하였고 엔진오일과 글리세린을 이용한 검증실험을 통하여 제시된 방법의 타당성을 검토하였다.

Keywords

References

  1. Lee, S., Choi, U. S., Li, S. and Eastman, J. A., 1999, "Measuring Thermal Conductivity of Fluids Containing Oxide Nanoparticles," ASME Tran. J. Heat Transfer, Vol. 121, pp. 280-289. https://doi.org/10.1115/1.2825978
  2. Yang, Y., Zhang, Z. G., Grulke, E. A., Anderson, W. B. and Wu, G., 2005, "Heat Transfer Properties of Nanoparticle-in-fluid Dispersions (nanofluids) in Laminar Flow," International Journal of Heat and Mass Transfer, Vol. 48, pp. 1107-1116. https://doi.org/10.1016/j.ijheatmasstransfer.2004.09.038
  3. Xuan, Y. and Li, Q., 2003, "Investigation on Convective Heat Transfer and Flow Features of Nanofluids," Journal of Heat Transfer, Vol. 125, pp. 151-155. https://doi.org/10.1115/1.1532008
  4. Wen, D. and Ding, Y., 2004, "Experimental Investigation into Convective Heat Transfer of Nanofluids at the Entrance Region under Laminar Flow Condition," International Journal of Heat and Mass Transfer, Vol. 37, pp. 5181-5188.
  5. Kim, S. H., Choi, S. Hong, J. and Kim, D. S., 2005, "Measurement of the Thermal Conductivity of Alumina/Zinc-Oxide/Titanium-Oxide Nanofluids," Trans. Korean Soc. Mech. Eng. B, Vol. 29, No. 9, pp. 1065-1073. https://doi.org/10.3795/KSME-B.2005.29.9.1065
  6. Jang, S. P. and Choi, U. S., 2004, "Role of Brownian Motion in the Enhanced Thermal Conductivity of Nanofluids," Applied Physics Letters, Vol. 84, Issue 21, pp. 4316-4318. https://doi.org/10.1063/1.1756684
  7. Lee, D. and Kim, J., 2006, "A New Mechanism for Enhanced Heat Transport of Nanofluid," Trans. Korean Soc. Mech. Eng. B, Vol. 30, No. 6, pp. 560-567. https://doi.org/10.3795/KSME-B.2006.30.6.560
  8. Das, K. D., Putra, N., Thiesen, P. and Roetzel, W., 2003, "Temperature Dependence of Thermal Conductivity Enhancement for Nanofluids," ASME Tran. J. Heat Transfer, Vol. 125, pp. 567-574. https://doi.org/10.1115/1.1571080
  9. Roder, H. M., 1981, "A Transient Hot-wire Thermal Conductivity Apparatus for Fluids" Journal of Research of the National Bureau of Standards, Vol. 86, No. 5, pp. 457-493. https://doi.org/10.6028/jres.086.020
  10. Perkins, R. A., Roder, H. M. and Nieto de Castro, C. A., 1991, "A High Temperature Transient Hot-wire Thermal Conductivity Apparatus for Fluids," Journal of Research of the NIST, Vol. 96, No. 3, pp. 247-269. https://doi.org/10.6028/jres.096.014
  11. Nagasaka, Y. and Nagashima, A., 1981, "Absolute Measurement of the Thermal Conductivity of Electrically Conducting Liquids by the Transient Hot-wire Method," Journal of Physics. E: Scientific Instrument, Vol. 14, pp. 1435-1440. https://doi.org/10.1088/0022-3735/14/12/020
  12. Lee, S., 2008, "Measuring Convective Heat Transfer Coefficient Around a Heated Fine Wire in Cross Flow of Nanofluids," Trans. Korean Soc. Mech. Eng. B, Vol. 32, No. 2, pp. 117-124. https://doi.org/10.3795/KSME-B.2008.32.2.117
  13. Lee, S., 2011, "An Experimental Apparatus Measuring Convective Heat Transfer Coefficient from a Heated Fine Wire Traversing in Nanofluids," Journal of Mechanical Science and Technology, Vol. 25, No. 1, pp. 135-142. https://doi.org/10.1007/s12206-010-1022-z
  14. Lee, S., 2012, "Measuring Convective Heat Transfer Coefficients of Nanofluids over a Circular Fine Wire Maintaining a Constant Temperature," Trans. Korean Soc. Mech. Eng. B, Vol. 36, No. 1, pp. 9-16. https://doi.org/10.3795/KSME-B.2012.36.1.009
  15. Incropera, F. P. and DeWitt, D. P., 2001, Introduction to heat transfer, 6th Ed., Wiley, A-20.
  16. Lee, C., Hwang, Y., Choi, Y., Park, M., Lee, J., Choi, C. and Oh, J., 2008, "Comparative Study to the Tribological Characteristics of Graphite Nano Lubricants after Thermal Degradation," Journal of the KSTLE, Vol. 24, No. 4, pp. 190-195.
  17. Moffat, R. J., 1988, "Describing the Uncertainties in Experimental Results," Experimental Thermal and Fluid Science, Vol 1, pp. 3-17. https://doi.org/10.1016/0894-1777(88)90043-X

Cited by

  1. Measuring Apparatus for Convective Heat Transfer Coefficient of Nanofluids Using a Thermistor Temperature Sensor vol.40, pp.2, 2016, https://doi.org/10.3795/KSME-B.2016.40.2.103
  2. -Surfactant Nanofluid with Time Lapse vol.26, pp.01, 2018, https://doi.org/10.1142/S2010132518500098