DOI QR코드

DOI QR Code

VARTM 공정에서 수지 함침에 따른 섬유체적율 변화의 측정 및 현상학적 모델링 연구

Experimental and Phenomenological Modeling Studies on Variation of Fiber Volume Fraction during Resin Impregnation in VARTM

  • Kim, Shin O (Composites Research Division, Korea Institute of Materials Science) ;
  • Seong, Dong Gi (Composites Research Division, Korea Institute of Materials Science) ;
  • Um, Moon Kwang (Composites Research Division, Korea Institute of Materials Science) ;
  • Choi, Jin Ho (Mechanical Engineering, Gyeongsang National Univ.)
  • 투고 : 2015.10.07
  • 심사 : 2015.12.28
  • 발행 : 2015.12.31

초록

VARTM 공정에서 고분자 수지가 함침 될 때 시간에 따라 섬유보강재가 팽창하여 섬유체적율이 감소하는 현상이 발생한다. 풍력 블레이드와 같은 대형 복합재료 구조물의 경우 섬유체적율의 변동 폭이 커져 제품의 치수가 변하고 기계적 물성이 저하될 뿐 아니라 예측하지 못한 고분자 수지의 사용량이 증가하는 등의 문제점과 경제적인 손실이 발생할 여지가 증가할 수 있다. 본 연구에서는 VARTM 공정에서 수지 함침에 따른 섬유 보강재의 팽창 현상에 관한 분석을 통하여 복합재료 액상 성형 공정에서의 섬유 체적율을 조절하는 방안을 모색하였다. 그 결과 유동 선단의 진행에 따라 섬유의 팽창 현상이 크게 두 단계로 구분되어 나타나는 것을 확인하였고 각각의 단계에서 작용하는 힘을 분석함으로써 섬유의 체적율 변화에 관한 현상학적 모델을 제시하였고 1차원 편미분 수치 해석과 연계하여 VARTM공정에서 수지 함침에 따른 섬유 체적율의 변화를 예측하였다.

As resin impregnates through the fiber preform in vacuum assisted resin transfer molding process, the volume of fibers is changed by expansion of fiber mat according to filling time. It causes not only the change in dimension but also the decrease of mechanical properties of the composite product. Moreover, it results in the economic loss by increase of the used amount of resin especially in the large product such as wind turbine blade. In this study, the ways to control fiber volume fraction were investigated by both the experimental and theoretical analyses on the expansion of fiber preform as the preform was impregnated by resin in the VARTM process. Two kinds of swelling stage were observed as flow front progressed, which was analyzed by comparing the experimental and simulation results. The process parameters are expected to be optimized by investigating the swelling behavior of fiber preform in the manufacturing process of the composite product.

키워드

참고문헌

  1. Li, W., Krehl, J., Gillespie Jr., J.W., Heider, D., Endrulat, M., Hochrein, K., Dunham, M.G., and Dubois, C.J., "Process and Performance Evaluation of the Vacuum-Assisted Process," Journal of Composite Materials, Vol. 38, No. 20, 2004, pp. 1803-1814. https://doi.org/10.1177/0021998304044769
  2. Kuentzer, N., Simacek, P., Advani, S.G., and Walsh, S.M., "Correlation of Void Distribution to VARTM Manufacturing Techniques," Composites Part A, Vol. 38, No. 3, 2007, pp. 802-813. https://doi.org/10.1016/j.compositesa.2006.08.005
  3. Markicevic, B., Litchfield, D., Heider, D., and Advani, S.G., "Role of Flow Enhancement Network during Filling of Fibrous Porous Media," Journal of Porous Media, Vol. 8, No. 3, 2005, pp. 281-297. https://doi.org/10.1615/JPorMedia.v8.i3.40
  4. Heider, D. and Gillespie Jr., J.W., "Automated VARTM Processing Of Large-Scale Composite Structures," Journal of Advanced Materials, Vol. 36, No. 4, 2004, pp. 11-17.
  5. Mathur, R., Advani, S.G., Heider, D., Hoffmann, C., Gillespie Jr., J.W., and Fink, B.K., "Flow Front Measurements and Model Validation in the Vacuum Assisted Resin Transfer Molding Process," Polymer Composites, Vol. 22, No. 4, 2001, pp. 477-490. https://doi.org/10.1002/pc.10553
  6. Yoon, M.K., Chen, H., Simacek, P., Heider, D., and Gillespie Jr., J.W., "Modeling VARTM Processes with Hybrid Media Incorporating Gravity Effects," Journal of Composite Materials, Vol. 43, No. 24, 2009, pp. 2903-2920. https://doi.org/10.1177/0021998309345306
  7. Simacek, P., Heider, D., Gillespie Jr., J.W., and Advani, S.G., "Post-filling Flow in Vacuum Assisted Resin Transfer Molding Processes: Theoretical Analysis," Composite. Part A, Vol. 40, No. 6-7, 2009, pp. 913-924. https://doi.org/10.1016/j.compositesa.2009.04.018
  8. Michaud, V. and Manson, J.-A.E., "Impregnation of Compressible Fiber Mats with a Thermoplastic Resin. Part I: Theory." Journal of Composite Materials, Vol. 35, No. 13, 2001, pp. 1150-1173. https://doi.org/10.1177/002199801772662271
  9. Ambrosi, D. and Preziosi, L., "Modelling Matrix Injection Through Elastic Porous Preforms." Composites Part A, Vol. 29, No. 1-2, 1998, pp. 5-18. https://doi.org/10.1016/S1359-835X(97)00029-8
  10. Antonelli, D. and Farina, A., "Resin Transfer Moulding: Mathematical Modelling and Numerical Simulations," Composites Part A, Vol. 30, No. 12, 1999, pp. 1367-1385. https://doi.org/10.1016/S1359-835X(99)00044-5
  11. Wolfrath, J., Michaud, V., and Manson, J.-A.E., "Deconsolidation in Glass Mat Thermoplastic Composites: Analysis of the Mechanisms", Composites part A, Vol. 36, No. 12, 2005, pp. 1608-1616. https://doi.org/10.1016/j.compositesa.2005.04.001
  12. Kang, M.K., Lee, W.I., and Hahn, H.T., "Analysis of Vacuum Bag Resin Transfer Molding Process," Composites: Part A, Vol. 32, No. 11, 2001, pp. 1553-1560. https://doi.org/10.1016/S1359-835X(01)00012-4
  13. Terzaghi, K. and Peck, R.B., Soil Mechanics in Engineering Practice 2nd ed, John Wiley & Sons. Co., New York, USA, 1967.
  14. Lopatnikov, S., Simacek, P., Gillespie Jr, J.W., and Advani, S.G., "A Closed form Solution to Describe Infusion of Resin Under Vacuum in Deformable Fibrous Porous Media", IOPSCIENCE: Model Simul. Mater. Sci. Eng., Vol. 12, No. 3, 2004, pp. 191-204. https://doi.org/10.1088/0965-0393/12/3/S09
  15. Bruschke, M.V. and Advani, S.G., "Finite Element/control Volume Approach to Mold Filling in Anisotropic Porous Media," Polym Composite, Vol. 11, No. 6, 1990, pp. 398-405. https://doi.org/10.1002/pc.750110613
  16. Acheson, J.A., Simacek, P., and Advani, S.G., "The Implications of Fiber Compaction and Saturation on Fully Coupled VARTM Simulation," Composites: Part A, Vol. 35, No. 2, 2004, pp. 159-169. https://doi.org/10.1016/j.compositesa.2003.02.001

피인용 문헌

  1. Effect of Hybrid Reinforcement on the Mechanical Properties of Vinyl Ester Green Composites vol.21, pp.2, 2015, https://doi.org/10.1007/s12221-020-9632-2