DOI QR코드

DOI QR Code

Comparing the anti-inflammatory effect of nanoencapsulated lycopene and lycopene on RAW 264.7 macrophage cell line

RAW 264.7 대식세포주에서 나노입자화 리코펜의 항염증 증진 효과

  • Received : 2015.11.25
  • Accepted : 2015.12.14
  • Published : 2015.12.31

Abstract

Purpose: We developed a method to load lycopene into maltodextrin and cyclodextrin in an attempt to overcome the poor bioavailability and improve the anti-inflammatory effect of this polyphenol. Methods: Nanosized lycopenes were encapsulated into biodegradable amphiphillic cyclodextrin and maltodextrin molecules prepared using a high pressure homogenizer at 15,000~25,000 psi. Cell damage was induced by lipopolysaccharides (LPS) in a mouse macrophage cell line, RAW 264.7. The cells were subjected to various doses of free lycopene (FL) and nanoencapsulated lycopene (NEL). RT-PCR was used to quantify the tumor necrosis factor (TNF-${\alpha}$), interleukin-$1{\beta}$ (IL-$1{\beta}$), IL-6, inducible nitric oxide synthase (iNOS), and cyclooxigenase-2 (COX-2) mRNA levels, while ELISA was used to determine the protein levels of TNF-${\alpha}$, IL-$1{\beta}$, and IL-6. Results: NEL significantly reduced the mRNA expression of IL-6 and IL-$1{\beta}$ at the highest dose, while not in cells treated with FL. In addition, NEL treatment caused a significant reduction in IL-6 and TNF-${\alpha}$ protein levels, compared to cells treated with a similar dose of FL. In addition, mRNA expression of iNOS and COX-2 enzyme in the activated macrophages was more efficiently suppressed by NEL than by FL. Conclusion: Overall, our results suggest that lycopene is a potential inflammation reducing agent and nanoencapsulation of lycopene can further improve its anti-inflammatory effect during tissue-damaging inflammatory conditions.

본 연구는 maltodextrin cyclodextrin에 의해 형성된 고분자 미셀에 나노캡슐화 시킨 리코펜과 일반 리코펜을 LPS로 염증을 유도시킨 RAW 264.7 대식세포주에 다양한 농도 (0~20)로 처리하여 염증매개 사이토카인 유전자 발현과 단백질 생성, 염증매개 효소인 iNOS, COX-2 mRNA 유전자 발현에 미치는 영향을 비교하였다. 나노캡슐화된 리코펜은 염증세포의 증식억제, 염증매개 사이토카인, 세포침식등의 염증으로 진행되는 데 관여하는 IL-6, IL-$1{\beta}$, TNF-${\alpha}$ 등의 사이토카인과 iNOS, COX-2 유전자 발현을 일반리코펜에 비해 효과적으로 억제하고 사이토카인 단백질 생성억제를 통해 염증억제 효과를 증진시키는 것이 관찰되었다. 따라서 지용성으로 생체이용성이 낮은 생리활성물질의 건강증진효과를 개선시키기 위해 나노캡슐화는 좋은 모델이 될 수 있을 것으로 사료된다.

Keywords

References

  1. Agarwal S, Rao AV. Tomato lycopene and its role in human health and chronic diseases. CMAJ 2000; 163(6): 739-744.
  2. Giovannucci E, Rimm EB, Liu Y, Stampfer MJ, Willett WC. A prospective study of tomato products, lycopene, and prostate cancer risk. J Natl Cancer Inst 2002; 94(5): 391-398. https://doi.org/10.1093/jnci/94.5.391
  3. Stahl W, Sies H. Lycopene: a biologically important carotenoid for humans? Arch Biochem Biophys 1996; 336(1): 1-9. https://doi.org/10.1006/abbi.1996.0525
  4. Giovannucci E. Tomatoes, tomato-based products, lycopene, and cancer: review of the epidemiologic literature. J Natl Cancer Inst 1999; 91(4): 317-331. https://doi.org/10.1093/jnci/91.4.317
  5. Giovannucci E, Ascherio A, Rimm EB, Stampfer MJ, Colditz GA, Willett WC. Intake of carotenoids and retinol in relation to risk of prostate cancer. J Natl Cancer Inst 1995; 87(23): 1767-1776. https://doi.org/10.1093/jnci/87.23.1767
  6. Schuurman AG, Goldbohm RA, Dorant E, van den Brandt PA. Vegetable and fruit consumption and prostate cancer risk: a cohort study in The Netherlands. Cancer Epidemiol Biomarkers Prev 1998; 7(8): 673-680.
  7. Chen L, Stacewicz-Sapuntzakis M, Duncan C, Sharifi R, Ghosh L, van Breemen R, Ashton D, Bowen PE. Oxidative DNA damage in prostate cancer patients consuming tomato sauce-based entrees as a whole-food intervention. J Natl Cancer Inst 2001; 93(24): 1872- 1879. https://doi.org/10.1093/jnci/93.24.1872
  8. Kucuk O, Sarkar FH, Sakr W, Djuric Z, Pollak MN, Khachik F, Li YW, Banerjee M, Grignon D, Bertram JS, Crissman JD, Pontes EJ, Wood DP Jr. Phase II randomized clinical trial of lycopene supplementation before radical prostatectomy. Cancer Epidemiol Biomarkers Prev 2001; 10(8): 861-868.
  9. Michael McClain R, Bausch J. Summary of safety studies conducted with synthetic lycopene. Regul Toxicol Pharmacol 2003; 37(2): 274-285. https://doi.org/10.1016/S0273-2300(03)00004-7
  10. Borel P, Grolier P, Armand M, Partier A, Lafont H, Lairon D, Azais-Braesco V. Carotenoids in biological emulsions: solubility, surface-to-core distribution, and release from lipid droplets. J Lipid Res 1996; 37(2): 250-261.
  11. Castenmiller JJ, West CE. Bioavailability and bioconversion of carotenoids. Annu Rev Nutr 1998; 18(1): 19-38. https://doi.org/10.1146/annurev.nutr.18.1.19
  12. Schierle J, Bretzel W, Bühler I, Faccin N, Hess D, Steiner K, Schüep W. Content and isomeric ratio of lycopene in food and human blood plasma. Food Chem 1997; 59(3): 459-465. https://doi.org/10.1016/S0308-8146(96)00177-X
  13. Shi J, Le Maguer M. Lycopene in tomatoes: chemical and physical properties affected by food processing. Crit Rev Food Sci Nutr 2000; 40(1): 1-42. https://doi.org/10.1080/10408690091189275
  14. Britton G. Structure and properties of carotenoids in relation to function. FASEB J 1995; 9(15): 1551-1558. https://doi.org/10.1096/fasebj.9.15.8529834
  15. Lee MT, Chen BH. Stability of lycopene during heating and illumination in a model system. Food Chem 2002; 78(4): 425-432. https://doi.org/10.1016/S0308-8146(02)00146-2
  16. Offord EA, Gautier JC, Avanti O, Scaletta C, Runge F, Krämer K, Applegate LA. Photoprotective potential of lycopene, beta-carotene, vitamin E, vitamin C and carnosic acid in UVA-irradiated human skin fibroblasts. Free Radic Biol Med 2002; 32(12): 1293- 1303. https://doi.org/10.1016/S0891-5849(02)00831-6
  17. Mokarram R, Mortazavi S, Najafi MH, Shahidi F. The influence of multi stage alginate coating on survivability of potential probiotic bacteria in simulated gastric and intestinal juice. Food Res Int 2009; 42(8): 1040-1045. https://doi.org/10.1016/j.foodres.2009.04.023
  18. Yu H, Huang Q. Enhanced in vitro anti-cancer activity of curcumin encapsulated in hydrophobically modified starch. Food Chem 2010; 119(2): 669-674. https://doi.org/10.1016/j.foodchem.2009.07.018
  19. Sahu A, Bora U, Kasoju N, Goswami P. Synthesis of novel biodegradable and self-assembling methoxy poly(ethylene glycol)-palmitate nanocarrier for curcumin delivery to cancer cells. Acta Biomater 2008; 4(6): 1752-1761. https://doi.org/10.1016/j.actbio.2008.04.021
  20. Ma Z, Haddadi A, Molavi O, Lavasanifar A, Lai R, Samuel J. Micelles of poly(ethylene oxide)-b-poly(epsilon-caprolactone) as vehicles for the solubilization, stabilization, and controlled delivery of curcumin. J Biomed Mater Res A 2008; 86(2): 300-310.
  21. Wang X, Jiang Y, Wang YW, Huang MT, Ho CT, Huang Q. Enhancing anti-inflammation activity of curcumin through O/W nanoemulsions. Food Chem 2008; 108(2): 419-424. https://doi.org/10.1016/j.foodchem.2007.10.086
  22. Tomren MA, Masson M, Loftsson T, Tonnesen HH. Studies on curcumin and curcuminoids XXXI. Symmetric and asymmetric curcuminoids: stability, activity and complexation with cyclodextrin. Int J Pharm 2007; 338(1-2): 27-34. https://doi.org/10.1016/j.ijpharm.2007.01.013
  23. Desai MP, Labhasetwar V, Amidon GL, Levy RJ. Gastrointestinal uptake of biodegradable microparticles: effect of particle size. Pharm Res 1996; 13(12): 1838-1845. https://doi.org/10.1023/A:1016085108889
  24. Markovits N, Ben Amotz A, Levy Y. The effect of tomato-derived lycopene on low carotenoids and enhanced systemic inflammation and oxidation in severe obesity. Isr Med Assoc J 2009; 11(10): 598-601.
  25. Kundu JK, Surh YJ. Inflammation: gearing the journey to cancer. Mutat Res 2008; 659(1-2): 15-30. https://doi.org/10.1016/j.mrrev.2008.03.002
  26. Terzić J, Grivennikov S, Karin E, Karin M. Inflammation and colon cancer. Gastroenterology 2010; 138(6): 2101-2114.e5. https://doi.org/10.1053/j.gastro.2010.01.058
  27. Baker RG, Hayden MS, Ghosh S. NF-kappaB, inflammation, and metabolic disease. Cell Metab 2011; 13(1): 11-22. https://doi.org/10.1016/j.cmet.2010.12.008
  28. Anisowicz A, Messineo M, Lee SW, Sager R. An NF-kappa B-like transcription factor mediates IL-1/TNF-alpha induction of gro in human fibroblasts. J Immunol 1991; 147(2): 520-527.
  29. Jones E, Adcock IM, Ahmed BY, Punchard NA. Modulation of LPS stimulated NF-kappaB mediated Nitric Oxide production by PKCepsilon and JAK2 in RAW macrophages. J Inflamm (Lond) 2007; 4(1): 23. https://doi.org/10.1186/1476-9255-4-23
  30. Ambs S, Hussain SP, Harris CC. Interactive effects of nitric oxide and the p53 tumor suppressor gene in carcinogenesis and tumor progression. FASEB J 1997; 11(6): 443-448. https://doi.org/10.1096/fasebj.11.6.9194524
  31. Bogdan C, Röllinghoff M, Diefenbach A. The role of nitric oxide in innate immunity. Immunol Rev 2000; 173(1): 17-26. https://doi.org/10.1034/j.1600-065X.2000.917307.x
  32. Dubois RN, Abramson SB, Crofford L, Gupta RA, Simon LS, Van De Putte LB, Lipsky PE. Cyclooxygenase in biology and disease. FASEB J 1998; 12(12): 1063-1073. https://doi.org/10.1096/fasebj.12.12.1063
  33. Yang C, Liu X, Cao Q, Liang Q, Qiu X. Prostaglandin E receptors as inflammatory therapeutic targets for atherosclerosis. Life Sci 2011; 88(5-6): 201-205. https://doi.org/10.1016/j.lfs.2010.11.015
  34. Chan G, Boyle JO, Yang EK, Zhang F, Sacks PG, Shah JP, Edelstein D, Soslow RA, Koki AT, Woerner BM, Masferrer JL, Dannenberg AJ. Cyclooxygenase-2 expression is up-regulated in squamous cell carcinoma of the head and neck. Cancer Res 1999; 59(5): 991-994.
  35. Conner EM, Grisham MB. Inflammation, free radicals, and antioxidants. Nutrition 1996; 12(4): 274-277. https://doi.org/10.1016/S0899-9007(96)00000-8
  36. Lee CW, Yen FL, Huang HW, Wu TH, Ko HH, Tzeng WS, Lin CC. Resveratrol nanoparticle system improves dissolution properties and enhances the hepatoprotective effect of resveratrol through antioxidant and anti-inflammatory pathways. J Agric Food Chem 2012; 60(18): 4662-4771. https://doi.org/10.1021/jf2050137
  37. Crispen PL, Uzzo RG, Golovine K, Makhov P, Pollack A, Horwitz EM, Greenberg RE, Kolenko VM. Vitamin E succinate inhibits NF-kappaB and prevents the development of a metastatic phenotype in prostate cancer cells: implications for chemoprevention. Prostate 2007; 67(6): 582-590. https://doi.org/10.1002/pros.20468
  38. Levy J, Bosin E, Feldman B, Giat Y, Miinster A, Danilenko M, Sharoni Y. Lycopene is a more potent inhibitor of human cancer cell proliferation than either alpha-carotene or beta-carotene. Nutr Cancer 1995; 24(3): 257-266. https://doi.org/10.1080/01635589509514415
  39. Pastori M, Pfander H, Boscoboinik D, Azzi A. Lycopene in association with alpha-tocopherol inhibits at physiological concentrations proliferation of prostate carcinoma cells. Biochem Biophys Res Commun 1998; 250(3): 582-585. https://doi.org/10.1006/bbrc.1998.9351
  40. Sahu A, Bora U, Kasoju N, Goswami P. Synthesis of novel biodegradable and self-assembling methoxy poly(ethylene glycol)-palmitate nanocarrier for curcumin delivery to cancer cells. Acta Biomater 2008; 4(6): 1752-1761. https://doi.org/10.1016/j.actbio.2008.04.021
  41. Jeong HS, Han JG, Ha JH, Kim Y, Oh SH, Kim SS, Jeong MH, Choi GP, Park UY. Antioxidant activities and skin-whitening effects of nano-encapsuled water extract from rubus coreanus miquel. Korean J Med Crop Sci 2009; 17(2): 83-89.

Cited by

  1. Recent Advances in Nanoparticle-Mediated Delivery of Anti-Inflammatory Phytocompounds vol.18, pp.4, 2017, https://doi.org/10.3390/ijms18040709
  2. Lycopene improves maternal reproductive performance by modulating milk composition and placental antioxidative and immune status vol.12, pp.24, 2021, https://doi.org/10.1039/d1fo01595h
  3. Lycopene nanodelivery systems; recent advances vol.119, pp.None, 2022, https://doi.org/10.1016/j.tifs.2021.12.016