DOI QR코드

DOI QR Code

Quantitative Trait Locus and Association Studies affecting Meat Colors in Chicken : Review

닭의 육질 개량을 위한 육색 관련 양적형질좌위 및 연관마커에 관한 고찰: 총설

  • Seo, Dongwon (Division of Animal and Dairy Science, Chungnam National University) ;
  • Lee, Jun Heon (Division of Animal and Dairy Science, Chungnam National University)
  • 서동원 (충남대학교 동물자원과학부) ;
  • 이준헌 (충남대학교 동물자원과학부)
  • Received : 2015.11.30
  • Accepted : 2015.12.19
  • Published : 2015.12.31

Abstract

Recently, livestock breeding is more focused on the meat quality rather than meat quantity, mainly due to the improvement of consumers' income. Among the meat quality traits, meat color is one of very important traits because meat color is the first selection criterion from the consumers in the market. Most of the economically important traits have continuous variations and these are called quantitative traits. the genomic locations affecting these traits are called quantitative trait locus (QTL), which is mostly controlled by many genes having small effects. In this study, the recent QTL and candidate gene studies were reviewed in order to meet the consumers' demand for the future market. In the chicken QTL database, three traits are related with meat colors, namely breast color (Bco), meat color (Mco), drip loss (DL) and pH. The identified number of QTLs is 33 from 13 chromosomal regions. In these QTL regions, 14 candidate genes were identified; Eight for meat color (APP, BCMO1, COL1A2, FTO, KPNA2, PSMD12, G0S2, FTSJ3), two for drip loss (AGRP, FTO) and four for pH (GALNT1, PCDH19, DIAPH1, SPP2). These QTLs and candidate genes need to be confirmed and fine mapping is ultimately needed for identification of causative variations. The recently developed chicken resource population using Korean native chicken can be used for the improvement of meat quality traits, which increase the value that needed in the chicken industry.

최근 소비자의 소득 수준이 향상되고, 육제품의 다원화 성향이 증가하면서 가축개량은 과거 성장 및 육량 중심의 개량에서 품질 중심의 개량으로 중심이 이동하고 있다. 특히, 식육의 품질 중에서 육색은 소비자가 식육을 선택 및 질을 판단하는 기준으로 작용하기 때문에 매우 중요한 형질이라고 볼 수 있다. 경제적으로 유용한 형질은 대부분 측정가능한 연속변이에 해당하고, 이러한 형질은 대부분 여러 유전자가 형질에 영향을 미치는 양적형질 좌위(Quantitative Trait Loci;QTL)에 속한다. Chicken QTL db에 보고된 닭의 육색형질과 관련된 형질들은 육색(Bco, Mco), 가열감량(DL), pH가 보고되어 있으며, 이는 닭의 13개 염색체에서 33개 QTL 및 association 영역이 보고되고 있다. 이 중에서 육색관련 후보 유전자는 APP, BCMO1, COL1A2, FTO, KPNA2, PSMD12, G0S2, FTSJ3가 있으며, 가열감량관련 후보유전자는 AGRP, FTO, pH와 관련된 후보유전자는 GALNT1, PCDH19, DIAPH1, SPP2 유전자로 총 14개 유전자가 확인되었다. 이렇게 확인된 후보유전자 및 QTL 연구결과는 한국재래닭에 적용 및 활용 가능성을 확인해 볼 필요가 있으며, 이러한 적용은 낮은 성장속도의 단점을 가진 한국재래닭의 개발에 있어 품질의 개량속도를 높여 산업적 가치를 빠르게 끌어올릴 수 있는 중요한 표지인자가 될 수 있을 것으로 사료된다.

Keywords

References

  1. Abril M, Campo MM, Onenc A, Sanudo C, Alberti P, Negueruela AI. 2001 Beef colour evolution as a function of ultimate pH. Meat Sci. 58:69-78. https://doi.org/10.1016/S0309-1740(00)00133-9
  2. Andersen HJ, Oksbjerg N, Young JF, Therkildsen M 2005 Feeding and meat quality-A future approach. Meat Sci. 70:543-554. https://doi.org/10.1016/j.meatsci.2004.07.015
  3. Bai Y, Sun G, Kang X, Han R, Tian Y, Li H, Wei Y, Zhu S 2012 Polymorphisms of the pro-opiomelanocortin and agouti-related protein genes and their association with chicken production traits. Mol Biol Rep. 39:7533-7539. https://doi.org/10.1007/s11033-012-1587-y
  4. Barbut S, Sosnicki AA, Lonergan SM, Knapp T, Ciobanu DC, Gatcliffe LJ, Huff-Lonergan E, Wilson EW 2008 Progress in reducing the pale, soft and exudative (PSE) problem in pork and poultry meat. Meat Sci. 79:46-63. https://doi.org/10.1016/j.meatsci.2007.07.031
  5. Chen Y, Gondro C, Quinn K, Herd RM, Parnell PF, Vanselow B 2011 Global gene expression profiling reveals genes expressed differentially in cattle with high and low residual feed intake. Anim Genet. 42: 475-490. https://doi.org/10.1111/j.1365-2052.2011.02182.x
  6. Choe JH, Jung S, Yun HJ 2010 Article: Differences in the quality characteristics between commercial Korean native chickens and broilers. Korean J Food Sci Anim Resour. 30:13-19. https://doi.org/10.5851/kosfa.2010.30.1.13
  7. Dunn IC, Meddle SL, Wilson PW, Wardle CA, Law AS, Bishop VR, Hindar C, Robertson GW, Burt DW, Ellison SJH, Morrice DM, Hocking PM 2013 Decreased expression of the satiety signal receptor CCKAR is responsible for increased growth and body weight during the domestication of chickens. American J Physiol Endocrinol Metab. 304:E909-E921. https://doi.org/10.1152/ajpendo.00580.2012
  8. Fan B, Lkhagvadorj S, Cai W, Young J, Smith RM, Dekkers JCM, Huff-Lonergan E, Lonergan SM, Rothschild MF 2010 Identification of genetic markers associated with residual feed intake and meat quality traits in the pig. Meat Sci. 84:645-650. https://doi.org/10.1016/j.meatsci.2009.10.025
  9. Fletcher DL 1999 Broiler breast meat color variation, pH, and texture. Poult Sci. 78:1323-1327. https://doi.org/10.1093/ps/78.9.1323
  10. Fontanesi L, Scotti E, Buttazzoni L, Davoli R, Russo V 2009 The porcine fat mass and obesity associated (FTO) gene is associated with fat deposition in Italian Duroc pigs. Anim Genet. 40:90-93. https://doi.org/10.1111/j.1365-2052.2008.01777.x
  11. Goate A, Chartier-Harlin MC, Mullan M, Brown J, Crawford F, Fidani L, Giuffra L, Haynes A, Irving N, James L 1991 Segregation of a missense mutation in the amyloid precursor protein gene with familial Alzheimer's disease. Nature. 349:704-706. https://doi.org/10.1038/349704a0
  12. Groenen MAM, Cheng HH, Bumstead N, Benkel BF, Briles WE, Burke T, Burt DW, Crittenden LB, Dodgson J, Hillel J, Lamont S, de Leon AP, Soller M, Takahashi H, Vignal A 2000 A consensus linkage map of the chicken genome. Genome Res. 10:137-147.
  13. Groenen MAM, Megens HJ, Zare Y, Warren WC, Hillier LW, Crooijmans RPMA, Vereijken A, Okimoto R, Muir WM, Cheng HH 2011 The development and characterization of a 60K SNP chip for chicken. BMC Genomics. 12:274. https://doi.org/10.1186/1471-2164-12-274
  14. Groenen MAM, Wahlberg P, Foglio M, Cheng HH, Megens HJ, Crooijmans RPMA, Besnier F, Lathrop M, Muir WM, Wong GKS, Gut I, Andersson L 2009 A high-density SNP-based linkage map of the chicken genome reveals sequence features correlated with recombination rate. Genome Res. 19:510-519.
  15. Gu X, Feng C, Ma L, Song C, Wang Y, Da Y, Li H, Chen K, Ye S, Ge C, Hu X, Li N 2011 Genome-wide association study of body weight in chicken F2 resource population. Plos One. 6:e21872. https://doi.org/10.1371/journal.pone.0021872
  16. Guo B, Kongsuwan K, Greenwood PL 2014 A gene expression estimator of intramuscular fat percentage for use in both cattle and sheep. J Anim Sci Biotechnol. 16:35.
  17. Harford ID, Pavlidis HO, Anthony NB 2014 Divergent selection for muscle color in broilers. Poult Sci. 93:1059-1066. https://doi.org/10.3382/ps.2013-03446
  18. Hillier LW, Miller W, Birney E, Warren W, Hardison RC, Ponting CP, Bork P, Burt DW, Groenen MAM, Delany ME, Dodgson JB, Chinwalla AT, Cliften PF, Clifton SW, Delehaunty KD, Fronick C et al. 2004 Sequence and comparative analysis of the chicken genome provide unique perspectives on vertebrate evolution. Nature. 432:695-716. https://doi.org/10.1038/nature03154
  19. Huff-Lonergan E, Lonergan SM. 2005. Mechanisms of waterholding capacity of meat: The role of postmortem biochemical and structural changes. Meat Sci. 71:194-204. https://doi.org/10.1016/j.meatsci.2005.04.022
  20. Jeon HJ, Choe JH, Jung Y, Kruk ZA, Lim DG, Jo C 2010 Comparison of the chemical composition, textural characteristics, and sensory properties of north and south Korean native chickens and commercial broilers. Korean J Food Sci Anim Resour. 30:171-178. https://doi.org/10.5851/kosfa.2010.30.2.171
  21. Jia X, Nie Q, Lamont SJ, Zhang X 2012 Variation in sequence and expression of the avian FTO, and association with glucose metabolism, body weight, fatness and body composition in chickens. Int J Obes. 36:1054-1061. https://doi.org/10.1038/ijo.2011.221
  22. Joo ST, Kauffman RG, Kim BC, KIM CJ 1995 The relationship between color and water-holding capacity in postrigor porcine longissimus muscle. J Muscle Foods. 6:211-226. https://doi.org/10.1111/j.1745-4573.1995.tb00568.x
  23. Kranis A, Gheyas AA, Boschiero C, Turner F, Yu L, Smith S, Talbot R, Pirani A, Brew F, Kaiser P, Hocking PM, Fife M, Salmon N, Fulton J, Strom TM, Haberer G, Weigend S, Preisinger R, Gholami M, Qanbari S, Simianer H, Watson KA, Woolliams JA, Burt DW 2013 Development of a high density 600K SNP genotyping array for chicken. BMC Genomics. 14:59. https://doi.org/10.1186/1471-2164-14-59
  24. Le Bihan-Duval E, Nadaf J, Berri C, Pitel F, Graulet B, Godet E, Leroux SY, Demeure O, Lagarrigue S, Duby C 2011 Detection of a cis eQTL controlling BMCO1 gene expression leads to the identification of a QTG for chicken breast meat color. Plos One. 6:e14825. https://doi.org/10.1371/journal.pone.0014825
  25. Li Y, Xu Z, Li H, Xiong Y, Zuo B 2010 Differential transcriptional analysis between red and white skeletal muscle of Chinese Meishan pigs. Int J Biol Sci. 27:350-360.
  26. Liu R, Sun Y, Zhao G, Wang F, Wu D, Zheng M, Chen J, Zhang L, Hu Y, Wen J 2013 Genome-wide association study identifies loci and candidate genes for body composition and meat quality traits in Beijing-You chickens. Plos One. 18:e61172.
  27. Mancini RA, Hunt MC 2005 Current research in meat color. Meat Sci. 71:100-121. https://doi.org/10.1016/j.meatsci.2005.03.003
  28. Nadaf J, Gilbert H, Pitel F, Berri CM, Feve K, Beaumont C, Duclos MJ, Vignal A, Porter TE, Simon J 2007 Identification of QTL controlling meat quality traits in an F2 cross between two chicken lines selected for either low or high growth rate. BMC Genomics. 8:155. https://doi.org/10.1186/1471-2164-8-155
  29. Nonneman DJ, Brown-Brandl T, Jones SA, Wiedmann RT, Rohrer GA 2012 A defect in dystrophin causes a novel porcine stress syndrome. BMC Genomics. 13:233. https://doi.org/10.1186/1471-2164-13-233
  30. Qiao M, Fletcher D, Smith D, Northcutt J 2001 The effect of broiler breast meat color on pH, moisture, water-holding capacity, and emulsification capacity. Poult Sci. 80:676-680. https://doi.org/10.1093/ps/80.5.676
  31. Rabie TSKM, Crooijmans RPMA, Bovenhuis H, Vereijken ALJ, Veenendaal T, van der Poel JJ, Van Arendonk JAM, Pakdel A, Groenen MAM 2005 Genetic mapping of quantitative trait loci affecting susceptibility in chicken to develop pulmonary hypertension syndrome. Anim Genet. 36:468-476. https://doi.org/10.1111/j.1365-2052.2005.01346.x
  32. Ritter MJ, Ellis M, Hollis GR, McKeith FK, Orellana DG, Van Genugten P, Curtis SE, Schlipf JM 2008 Frequency of the HAL-1843 mutation of the ryanodine receptor gene in dead and nonambulatory-noninjured pigs on arrival at the packing plant. J Anim Sci. 86:511-514. https://doi.org/10.2527/jas.2007-0329
  33. Sammel LM, Hunt MC, Kropf DH, Hachmeister KA, Kastner CL, Johnson DE 2002 Influence of chemical characteristics of beef inside and outside semimembranosus on color traits. J Food Sci. 67:1323-1330. https://doi.org/10.1111/j.1365-2621.2002.tb10282.x
  34. Seo DW, Park HB, Jung S, Cahyadi M, Choi NR, Jin S, Heo KN, Jo C, Lee JH 2015 QTL analyses of general compound, color, and pH traits in breast and thigh muscles in Korean native chicken. Livestock Sci. 182:145-150. https://doi.org/10.1016/j.livsci.2015.09.020
  35. Sun Y, Zhao G, Liu R, Zheng M, Hu Y, Wu D, Zhang L, Li P, Wen J 2013 The identification of 14 new genes for meat quality traits in chicken using a genome-wide association study. BMC Genomics. 14:458. https://doi.org/10.1186/1471-2164-14-458
  36. Wallis JW, Aerts J, Groenen MAM, Crooijmans RPMA, Layman D, Graves TA, Scheer DE, Kremitzki C, Fedele MJ, Mudd NK, Cardenas M, Higginbotham J, Carter J, McGrane R et al. 2004 A physical map of the chicken genome. Nature. 432:761-764. https://doi.org/10.1038/nature03030
  37. Wright D, Kerje S, Lundstrom K, Babol J, Schutz K, Jensen P, Andersson L 2006 Quantitative trait loci analysis of egg and meat production traits in a Red Junglefowl ${\time}$ White Leghorn cross. Anim Genet. 37:529-534. https://doi.org/10.1111/j.1365-2052.2006.01515.x
  38. Yoshida M, Ishikawa A, Goto T, Goto N, Nishibori M, Tsudzuki M 2013 QTL mapping for meat color traits using the F2 intercross between the Oh-Shamo (Japanese Large Game) and White Leghorn chickens. J Poult Sci. 50:198-205. https://doi.org/10.2141/jpsa.0120189
  39. Zeng F, Xie L, Pang X, Liu W, Nie Q, Zhang X 2011 Complementary deoxyribonucleic acid cloning of avian G0/G1 switch gene 2, and its expression and association with production traits in chicken. Poult Sci. 90:1548-1554. https://doi.org/10.3382/ps.2010-01204
  40. Zhao C, Tian F, Yu Y, Luo J, Mitra A 2012 Functional genomic analysis of variation on beef tenderness induced by acute stress in Angus cattle. Comp Funct Genomics. 2012: 756284.