DOI QR코드

DOI QR Code

신규시장 성장모형의 모수 추정을 위한 전문가 시스템

An Expert System for the Estimation of the Growth Curve Parameters of New Markets

  • Lee, Dongwon (School of Business Administration, Hansung University) ;
  • Jung, Yeojin (School of Business Administration, Kookmin University) ;
  • Jung, Jaekwon (School of Business Administration, Kookmin University) ;
  • Park, Dohyung (School of MIS, Kookmin University)
  • 투고 : 2015.09.27
  • 심사 : 2015.12.12
  • 발행 : 2015.12.30

초록

시장 수요 예측은 일정 기간 동안 소비자에게 판매되는 동종 제품 또는 서비스의 수량 혹은 매출액의 규모를 추정하는 활동으로서, 기업경영활동에 있어 효율적인 의사결정을 내릴 수 있는 근거로 활용된다는 점에서 중요하게 인식되고 있다. 신규 시장의 수요를 예측하기 위해 다양한 시장성장모형이 개발되어 왔다. 이런 모형들은 일반적으로 시장의 크기 변화의 동인을 신기술 확산으로 보고 소비자인 개인에게 기술이 확산되는 과정을 통해 시장 크기가 변하는 과정을 확산모형으로 구현하게 된다. 그러나, 시장이 형성된 직후에는 수요 관측치의 부족으로 인해 혁신계수, 모방계수와 같은 예측모형의 모수를 정확하게 추정하는 것이 쉽지 않다. 이런 경우, 전문가의 판단 하에 예측하고자 하는 시장과 유사한 시장을 결정하고 이를 참고하여 모수를 추정하게 되는데, 어떤 시장을 유사하다고 판단하느냐에 따라 성장모형은 크게 달라지게 되므로, 정확한 예측을 위해서는 유사 시장을 찾는 것은 매우 중요하다. 그러나, 이런 방식은 직관과 경험이라는 정성적 판단에 크게 의존함으로써 일관성이 떨어질 수밖에 없으며, 결국, 만족할 만한 수준의 결과를 얻기 힘들다는 단점을 지닌다. 이런 정성적 방법은 유사도가 더 높은 시장을 누락시키고 유사도가 낮은 시장을 선택하는 오류를 일으킬 수 있다. 이런 이유로, 본 연구는 신규 시장의 모수를 추정하기 위해 필요한 유사시장을 누락 없이 효과적으로 찾아낼 수 있는 사례기반 전문가 시스템을 설계하고자 수행되었다. 제안된 모형은 데이터 마이닝의 군집분석 기법과 추천 시스템의 내용 기반 필터링 방법론을 기반으로 전문가 시스템으로 구현되었다. 본 연구에서 개발된 시스템의 유용성을 확인하고자 정보통신분야 시장의 모수를 추정하는 실험을 실시하였다. 전문가를 대상으로 실시된 실험에서, 시스템을 사용한 모수의 추정치가 시스템을 사용하지 않았을 때와 비교하여 실제 모수와 더 가까움을 보임으로써 시스템의 유용성을 증명하였다.

Demand forecasting is the activity of estimating the quantity of a product or service that consumers will purchase for a certain period of time. Developing precise forecasting models are considered important since corporates can make strategic decisions on new markets based on future demand estimated by the models. Many studies have developed market growth curve models, such as Bass, Logistic, Gompertz models, which estimate future demand when a market is in its early stage. Among the models, Bass model, which explains the demand from two types of adopters, innovators and imitators, has been widely used in forecasting. Such models require sufficient demand observations to ensure qualified results. In the beginning of a new market, however, observations are not sufficient for the models to precisely estimate the market's future demand. For this reason, as an alternative, demands guessed from those of most adjacent markets are often used as references in such cases. Reference markets can be those whose products are developed with the same categorical technologies. A market's demand may be expected to have the similar pattern with that of a reference market in case the adoption pattern of a product in the market is determined mainly by the technology related to the product. However, such processes may not always ensure pleasing results because the similarity between markets depends on intuition and/or experience. There are two major drawbacks that human experts cannot effectively handle in this approach. One is the abundance of candidate reference markets to consider, and the other is the difficulty in calculating the similarity between markets. First, there can be too many markets to consider in selecting reference markets. Mostly, markets in the same category in an industrial hierarchy can be reference markets because they are usually based on the similar technologies. However, markets can be classified into different categories even if they are based on the same generic technologies. Therefore, markets in other categories also need to be considered as potential candidates. Next, even domain experts cannot consistently calculate the similarity between markets with their own qualitative standards. The inconsistency implies missing adjacent reference markets, which may lead to the imprecise estimation of future demand. Even though there are no missing reference markets, the new market's parameters can be hardly estimated from the reference markets without quantitative standards. For this reason, this study proposes a case-based expert system that helps experts overcome the drawbacks in discovering referential markets. First, this study proposes the use of Euclidean distance measure to calculate the similarity between markets. Based on their similarities, markets are grouped into clusters. Then, missing markets with the characteristics of the cluster are searched for. Potential candidate reference markets are extracted and recommended to users. After the iteration of these steps, definite reference markets are determined according to the user's selection among those candidates. Then, finally, the new market's parameters are estimated from the reference markets. For this procedure, two techniques are used in the model. One is clustering data mining technique, and the other content-based filtering of recommender systems. The proposed system implemented with those techniques can determine the most adjacent markets based on whether a user accepts candidate markets. Experiments were conducted to validate the usefulness of the system with five ICT experts involved. In the experiments, the experts were given the list of 16 ICT markets whose parameters to be estimated. For each of the markets, the experts estimated its parameters of growth curve models with intuition at first, and then with the system. The comparison of the experiments results show that the estimated parameters are closer when they use the system in comparison with the results when they guessed them without the system.

키워드

참고문헌

  1. Ahn, C. and S. Kang, "An Analysis of the Cross Relation between The New Telecommunications Services and Demand Forecast based on Use Pattern of Consumers," Proceedings of the Korean Institute of Industrial Engineers, (2007), 585-592.
  2. Balabanovic, M. and Y. Shoham, "Fab: contentbased, collaborative recommendation," Communications of the ACM, Vol.40, No.3 (1997), 66-72. https://doi.org/10.1145/245108.245124
  3. Bass, F. M., "A New Product Growth Model for Consumer Durables," Management Science, Vol.15, No.5(1969), 215-227. https://doi.org/10.1287/mnsc.15.5.215
  4. Fourt, L. A. and J. W. Woodstock, "Early Prediction of Market Success of New Grocery Products," Journal of Marketing, Vol.25, No.2(1960), No.2, 31-38. https://doi.org/10.2307/1248608
  5. Hartigan, J. A., Clustering algorithms, John Wiley & Sons, Inc., 1975.
  6. Heeler, R. M. and T. P. Hustad, "Problems in predicting new product growth for consumer durables," Management Science, Vol.26, No.10 (1980), 1007-1020. https://doi.org/10.1287/mnsc.26.10.1007
  7. Hwang, Y., "A Hybrid Forecasting Framework based on Case-based Reasoning and Artificial Neural Network," Journal of Intelligence and Information Systems, Vol.18, No.4(2012), 43-57. https://doi.org/10.13088/JIIS.2012.18.4.043
  8. Nam, B.-W., K.-B. Song, K.-H. Kim, and J.-M. Cha, "The Spatial Electric Load Forecasting Algorithm using the Multiple Regression Analysis Method," Journal of the Korean Institute of Illuminating and Electrical Installation Engineers, Vol.22, No.2(2008), 63-70. https://doi.org/10.5207/JIEIE.2008.22.2.063
  9. Jain, A. K., and R. C. Dubes, Algorithms for clustering data, Prentice-Hall, Inc., 1988.
  10. Kim, J.-H, K.-H. Hong, and J.-Y. Min, "A Real-Time Stock Market Prediction Using Knowledge Accumulation," Journal of Intelligence and Information Systems, Vol.17, No.4(2011), 109-130.
  11. Kim, S.-T., "The Study on Tourism Demand Forecasting: Focused on Panel Data Analysis Method," Journal of Tourism and Leisure Research, Vol.26, No.1(2014), 115-129.
  12. Lee, G. and Lee, C., "Comparison Study of Demand Forecasting Techniques using Growth Curve Models," Sogang Journal of Business, Vol.13, No.2(2002), 195-228.
  13. Lim, J.-H., S.-Y. Kim, J.-D. Park, and K.-B. Song, "Representative Temperature Assesment for Improvement of Short-Term Load Forecasting Accuracy," Journal of the Korean Institute of Illuminating and Electrical Installation Engineers, Vol.27, No.6(2013), 39-43. https://doi.org/10.5207/JIEIE.2013.27.6.039
  14. Mansfield, E., "Technical Change and the Rate of Imitation," Econometrica: Journal of the Econometric Society, (1961), 741-766.
  15. Montaner, M., B. Lopez, and J. L. De La Rosa, "A taxonomy of recommender agents on the internet," Artificial intelligence review, Vol.19, No.4(2003), 285-330. https://doi.org/10.1023/A:1022850703159
  16. Noh, K., S. Sim, S. Hong, and B. Jeong, "A study on hybrid demand forecasting for mobile phone," Proceedings of the 2011 Spring KIIE/KORS Joint Conference, (2011), 1222-1228.
  17. Resnick, P. and H. R. Varian, "Recommender systems," Communications of the ACM, Vol.40, No.3 (1997), 56-58.
  18. Song, K.-B. and J.-H. Lim, "Short-Term Load Forecasting for the Consecutive Holidays Considering Businesses' Operation Rates of Industries," The Transaction of the Korean Institute of Electrical Engineers, Vol.62, No.12(2013), 1657-1660. https://doi.org/10.5370/KIEE.2013.62.12.1657
  19. Srinivasan, V. and C. H. Mason, "Technical note-nonlinear least squares estimation of new product diffusion models," Marketing science, Vol.5, No.2(1986), 169-178. https://doi.org/10.1287/mksc.5.2.169
  20. Van den Bulte, C. and G. L. Lilien, "Bias and systematic change in the parameter estimates of macro-level diffusion models," Marketing Science, Vol.16, No.4(1997), 338-353. https://doi.org/10.1287/mksc.16.4.338
  21. Woodstock, L. W. and F. Skoog, "Relationships between growth rates and nucleic acid contents in the roots of inbred lines of corn," American Journal of Botany, Vol.47, No.9(1960), 713-716. https://doi.org/10.2307/2439105

피인용 문헌

  1. 데이터기반의 신규 사업 매출추정방법 연구: 지능형 사업평가 시스템을 중심으로 vol.23, pp.1, 2017, https://doi.org/10.13088/jiis.2017.23.1.001
  2. 온라인 협업 시스템을 통한 프로젝트 성과 창출 메커니즘 연구 : 개인특성, 관계특성, 시스템특성을 중심으로 vol.25, pp.1, 2015, https://doi.org/10.21219/jitam.2018.25.1.047
  3. 중소기업 프로파일링 분석을 통한 기술유출 방지 및 보호 모형 연구 vol.27, pp.1, 2015, https://doi.org/10.5859/kais.2018.27.1.171
  4. 브랜드 명성에 따른 기술 침해에 대한 소비자의 태도 변화: 약자 브랜드의 언더독 효과를 중심으로 vol.27, pp.4, 2015, https://doi.org/10.5859/kais.2018.27.4.167