References
- Choi, J. W. and Kim, H. C., "3D Printing Technologies - A Review," J. Korean Soc. Manuf. Process Eng., Vol. 14, No. 3, pp. 1-8, 2015. https://doi.org/10.14775/ksmpe.2015.14.3.001
- Kim, J. Y., Park, J. K., Hahn, S. K. Kwon, T. H. and Cho, D. W., "Development of the Flow Behavior Model for 3D Scaffold Fabrication in the Polymer Deposition Process by a Heating Method," J. Micromech. Microeng., Vol. 19, No. 10, 105003, 2009. https://doi.org/10.1088/0960-1317/19/10/105003
- Choi, J. S., Kang, H.-Y., Lee, I. H., Ko, T. J. and Cho, D. W., "Development of Micro-stereolithography Technology using a UV Lamp and Optical Fiber," Int. J. Adv. Manuf. Technol., Vol. 41, No. 3-4, pp. 281-286, 2009. https://doi.org/10.1007/s00170-008-1461-1
- Jin, S. H., Lee, J. K., Lee, S. and Lee, K. C., "Output Characteristic of a Flexible Tactile Sensor Manufactured by 3D Printing Technique," J. Korean Soc. Precis. Eng., Vol. 31, No. 2, pp. 149-156, 2014. https://doi.org/10.7736/KSPE.2014.31.2.149
- Muth, J. T., Vogt, D. M., Truby, R. L. Menguc, Y. Kolesky, D. B., Wood, R. J. and Lewis, J. A, "Embedded 3D printing of Strain Sensors within Highly Stretchable Elastomers," Adv. Mater., Vol. 26, No. 36, pp. 6307-6312, 2014. https://doi.org/10.1002/adma.201400334
- Kesner, S. B. and Howe, R. D., "Design Principles for Rapid Prototyping Forces Sensors using 3-D Printing," IEEE-ASME Trans. Mechatron., Vol. 16, No. 5, pp. 866-870, 2011. https://doi.org/10.1109/TMECH.2011.2160353
- Park, J. H., Jang, J. and Cho, D. W, "Threedimensional (3D) Printed 3D Structure for Tissue Engineering," Trans. Korean Soc. Mech. Eng. B, Vol. 38, No. 10, pp. 817-829, 2014. https://doi.org/10.3795/KSME-B.2014.38.10.817
- Murphy, S. V. and Atala, A., "3D Bioprinting of Tissues and Organs," Nat. Biotechnol., Vol. 32, No. 8, pp. 773-785, 2014. https://doi.org/10.1038/nbt.2958
- Sirringhaus, H., Kawase, T., Friend, R. H., Shimoda, T., Inbasekaran, M., Wu, W. and Woo, E. P. "High-resolution Inkjet Printing of All-polymer Transistor Circuits," Science, Vol. 290, No. 5499, pp. 2123-2126, 2000. https://doi.org/10.1126/science.290.5499.2123
- Xu, T., Jin, J., Gregory, C., Hickman, J. J. and Boland, T., "Inkjet Printing of Viable Mammalian Cells," Biomater., Vol. 26, No. 1, pp. 93-99, 2005. https://doi.org/10.1016/j.biomaterials.2004.04.011
- Kang, H. W., Park, J. H. and Cho, D. W., "A Pixel based Solidification Model for Projection based Stereolithography Technology," Sens. Actuator A-Phys., Vol. 178, pp. 223-229, 2012. https://doi.org/10.1016/j.sna.2012.01.016
- Sun, K., Wei, T. S., Ahn, B. Y., Seo, J. Y., Dillon, S. J. and Lewis, J. A., "3D Printing of Interdigitated Li-Ion Microbattery Architectures," Adv. Mater., Vol. 25, No. 33, pp. 4539-4543, 2013. https://doi.org/10.1002/adma.201301036
- Zarek, M., Layani, M., Cooperstein, I., Sachyani, E., Cohn, D. and Magdassi, S., "3D Printing of Shape Memory Polymers for Flexible Electronic Devices," Adv. Mater., 2015.
- Seol, Y. J., Kang, T. Y., and Cho, D. W.. "Solid Freeform Fabrication Technology applied to Tissue Engineering with Various Biomaterials," Soft Matter, Vol. 8, No. 6, pp. 1730-1735, 2012. https://doi.org/10.1039/C1SM06863F
- Ferris, C. J., Gilmore, K. J., Beirne, S., McCallum, D. and Wallace, G. G., "Bio-ink for On-demand Printing of Living Cells," Biomater. Sci., Vol. 1, No. 2, pp. 224-230, 2013. https://doi.org/10.1039/C2BM00114D
- Benam, K. H., Dauth, S., Hassell, B., Herland, A., Jain, A., Jang, K. J. and Ingber, D. E., "Engineered In Vitro Disease Models," Annual Review of Pathology: Mechanisms of Disease, Vol. 10, pp. 195-262, 2015. https://doi.org/10.1146/annurev-pathol-012414-040418
- Malda, J., Visser, J., Melchels, F. P., Jüngst, T., Hennink, W. E., Dhert, W. J., Groll, J. and Hutmacher, D. W., "25th anniversary article: Engineering Hydrogels for Biofabrication," Adv. Mater., Vol. 25, No. 36, pp. 5011-5028, 2-13. https://doi.org/10.1002/adma.201302042
- Khalil, S. and Sun, W., "Bioprinting Endothelial Cells with Alginate for 3D Tissue Constructs," J. Biomech. Eng., Vol. 131, No. 11, pp. 111002, 2009. https://doi.org/10.1115/1.3128729
- Kolesky, D. B., Truby, R. L., Gladman, A., Busbee, T. A., Homan, K. A. and Lewis, J. A., "3D Bioprinting of Vascularized, Heterogeneous Cell-laden Tissue Constructs," Adv. Mater., Vol. 26, No. 19, pp. 3124-3130, 2014. https://doi.org/10.1002/adma.201305506
- Schuurman, W., Levett, P. A., Pot, M. W., van Weeren, P. R., Dhert, W. J., Hutmacher, D. W., Melchels, F. P. W., Klein, T. J., Malda, J., "Gelatin-Methacrylamide Hydrogels as Potential Biomaterials for Fabrication of Tissue-Engineered Cartilage Constructs," Macromolecular Biosci., Vol. 13, No. 5, pp. 551-561, 2013. https://doi.org/10.1002/mabi.201200471
- Duan, B., Hockaday, L. A., Kang, K. H. and Butcher, J. T., "3D Bioprinting of Heterogeneous Aortic Valve Conduits with Alginate/gelatin Hydrogels," J. Biomedical Mater. Research Part A, Vol. 101, No. 5, pp. 1255-1264, 2013.
- Pati, F., Jang, J., Ha, D.-H., Kim, S. W., Rhie, J.-W., Shim, J.-H., Kim, D.-H. and Cho, D.-W., "Printing Three-dimensional Tissue Analogues with Decellularized Extracellular Matrix Bioink," Nat. Commun., Vol. 5, 2014.
-
Jeon, H. A., Lee, S. W. and Kwon, O. H., "Fabrication of Poly(
$\gamma$ -glutamic acid) Porous Scaffold for Tissue Engineering Applications," J. Korean Soc. Manuf. Process Eng., Vol. 13, No. 3, pp. 35-41, 2014. https://doi.org/10.14775/ksmpe.2014.13.3.035 - Jeong, H. J., Jee, M.-H., Kim, S.-Y. and Lee, S.-J., "Measurement of the Compressive Force on the Knee Joint Model fabricated by 3D Printing," J. Korean Soc. Manuf. Process Eng., Vol. 13, No. 2, pp. 1-7, 2014. https://doi.org/10.14775/ksmpe.2014.13.2.001
Cited by
- Investigation of the Internal Stress Relaxation in FDM 3D Printing : Annealing Conditions vol.17, pp.4, 2018, https://doi.org/10.14775/ksmpe.2018.17.4.130
- Study on Electrical Characteristics of FDM Conductive 3D Printing According to Annealing Conditions vol.17, pp.6, 2018, https://doi.org/10.14775/ksmpe.2018.17.6.053
- 위치추적기를 내장한 산악용 신발 디자인 및 3D 다공성 폴리머 프린팅을 이용한 중창 제작에 관한 연구 vol.15, pp.6, 2015, https://doi.org/10.14775/ksmpe.2016.15.6.083
- 융합 소방용 안전모 개발을 위한 중요도-만족도 연관 분석 vol.15, pp.6, 2015, https://doi.org/10.14775/ksmpe.2016.15.6.109
- An Algorithm for the Removing of Offset Loop Twists during the Tool Path Generation of FDM 3D Printer vol.16, pp.3, 2017, https://doi.org/10.14775/ksmpe.2017.16.3.001
- 3차원스캐닝과 역설계를 이용한 트랙터 복합작업기 치수 검사 vol.16, pp.3, 2015, https://doi.org/10.14775/ksmpe.2017.16.3.045
- 금속 3D 프린팅으로 보수된 AISI H13 금형강 마모특성 평가 vol.16, pp.4, 2015, https://doi.org/10.14775/ksmpe.2017.16.4.009
- 레이저 소결 적층 시스템과 실험 계획법을 이용한 3차원 바이오 세라믹 인공지지체의 제작 vol.18, pp.12, 2015, https://doi.org/10.14775/ksmpe.2019.18.12.059
- Manufacturing Experiments using FDM 3D-printed Flexible Resistance Sensors with Heterogeneous Polymer Material Annealing vol.19, pp.1, 2015, https://doi.org/10.14775/ksmpe.2020.19.01.081
- 툴 체인지 방식 멀티 노즐 3D프린터의 설계 및 제작 vol.20, pp.2, 2015, https://doi.org/10.14775/ksmpe.2021.20.02.038