DOI QR코드

DOI QR Code

A Review of the Fabrication of Soft Structures with Three-dimensional Printing Technology

3차원 프린팅 기술을 이용한 연성 구조물 제작

  • 장진아 (포항공과대학교 기계공학과) ;
  • 조동우 (포항공과대학교 기계공학과)
  • Received : 2015.12.08
  • Accepted : 2015.12.09
  • Published : 2015.12.31

Abstract

3D printing technology is a promising technique for fabricating complex 3D architectures based on the CAD/CAM system, and it has been extensively investigated to manufacture structures in the fields of mechanical engineering, space technology, automobiles, and biomedical and electrical applications. Recent advances in the 3D printing of soft structures have received attention for the application of the construction of flexible sensors of soft robotics or the recreation of tissue/organ-specific microenvironments. In this review paper, we would like to focus on delivering state-of-the-art fabrication of soft structures with 3D printing technology and its various applications.

Keywords

References

  1. Choi, J. W. and Kim, H. C., "3D Printing Technologies - A Review," J. Korean Soc. Manuf. Process Eng., Vol. 14, No. 3, pp. 1-8, 2015. https://doi.org/10.14775/ksmpe.2015.14.3.001
  2. Kim, J. Y., Park, J. K., Hahn, S. K. Kwon, T. H. and Cho, D. W., "Development of the Flow Behavior Model for 3D Scaffold Fabrication in the Polymer Deposition Process by a Heating Method," J. Micromech. Microeng., Vol. 19, No. 10, 105003, 2009. https://doi.org/10.1088/0960-1317/19/10/105003
  3. Choi, J. S., Kang, H.-Y., Lee, I. H., Ko, T. J. and Cho, D. W., "Development of Micro-stereolithography Technology using a UV Lamp and Optical Fiber," Int. J. Adv. Manuf. Technol., Vol. 41, No. 3-4, pp. 281-286, 2009. https://doi.org/10.1007/s00170-008-1461-1
  4. Jin, S. H., Lee, J. K., Lee, S. and Lee, K. C., "Output Characteristic of a Flexible Tactile Sensor Manufactured by 3D Printing Technique," J. Korean Soc. Precis. Eng., Vol. 31, No. 2, pp. 149-156, 2014. https://doi.org/10.7736/KSPE.2014.31.2.149
  5. Muth, J. T., Vogt, D. M., Truby, R. L. Menguc, Y. Kolesky, D. B., Wood, R. J. and Lewis, J. A, "Embedded 3D printing of Strain Sensors within Highly Stretchable Elastomers," Adv. Mater., Vol. 26, No. 36, pp. 6307-6312, 2014. https://doi.org/10.1002/adma.201400334
  6. Kesner, S. B. and Howe, R. D., "Design Principles for Rapid Prototyping Forces Sensors using 3-D Printing," IEEE-ASME Trans. Mechatron., Vol. 16, No. 5, pp. 866-870, 2011. https://doi.org/10.1109/TMECH.2011.2160353
  7. Park, J. H., Jang, J. and Cho, D. W, "Threedimensional (3D) Printed 3D Structure for Tissue Engineering," Trans. Korean Soc. Mech. Eng. B, Vol. 38, No. 10, pp. 817-829, 2014. https://doi.org/10.3795/KSME-B.2014.38.10.817
  8. Murphy, S. V. and Atala, A., "3D Bioprinting of Tissues and Organs," Nat. Biotechnol., Vol. 32, No. 8, pp. 773-785, 2014. https://doi.org/10.1038/nbt.2958
  9. Sirringhaus, H., Kawase, T., Friend, R. H., Shimoda, T., Inbasekaran, M., Wu, W. and Woo, E. P. "High-resolution Inkjet Printing of All-polymer Transistor Circuits," Science, Vol. 290, No. 5499, pp. 2123-2126, 2000. https://doi.org/10.1126/science.290.5499.2123
  10. Xu, T., Jin, J., Gregory, C., Hickman, J. J. and Boland, T., "Inkjet Printing of Viable Mammalian Cells," Biomater., Vol. 26, No. 1, pp. 93-99, 2005. https://doi.org/10.1016/j.biomaterials.2004.04.011
  11. Kang, H. W., Park, J. H. and Cho, D. W., "A Pixel based Solidification Model for Projection based Stereolithography Technology," Sens. Actuator A-Phys., Vol. 178, pp. 223-229, 2012. https://doi.org/10.1016/j.sna.2012.01.016
  12. Sun, K., Wei, T. S., Ahn, B. Y., Seo, J. Y., Dillon, S. J. and Lewis, J. A., "3D Printing of Interdigitated Li-Ion Microbattery Architectures," Adv. Mater., Vol. 25, No. 33, pp. 4539-4543, 2013. https://doi.org/10.1002/adma.201301036
  13. Zarek, M., Layani, M., Cooperstein, I., Sachyani, E., Cohn, D. and Magdassi, S., "3D Printing of Shape Memory Polymers for Flexible Electronic Devices," Adv. Mater., 2015.
  14. Seol, Y. J., Kang, T. Y., and Cho, D. W.. "Solid Freeform Fabrication Technology applied to Tissue Engineering with Various Biomaterials," Soft Matter, Vol. 8, No. 6, pp. 1730-1735, 2012. https://doi.org/10.1039/C1SM06863F
  15. Ferris, C. J., Gilmore, K. J., Beirne, S., McCallum, D. and Wallace, G. G., "Bio-ink for On-demand Printing of Living Cells," Biomater. Sci., Vol. 1, No. 2, pp. 224-230, 2013. https://doi.org/10.1039/C2BM00114D
  16. Benam, K. H., Dauth, S., Hassell, B., Herland, A., Jain, A., Jang, K. J. and Ingber, D. E., "Engineered In Vitro Disease Models," Annual Review of Pathology: Mechanisms of Disease, Vol. 10, pp. 195-262, 2015. https://doi.org/10.1146/annurev-pathol-012414-040418
  17. Malda, J., Visser, J., Melchels, F. P., Jüngst, T., Hennink, W. E., Dhert, W. J., Groll, J. and Hutmacher, D. W., "25th anniversary article: Engineering Hydrogels for Biofabrication," Adv. Mater., Vol. 25, No. 36, pp. 5011-5028, 2-13. https://doi.org/10.1002/adma.201302042
  18. Khalil, S. and Sun, W., "Bioprinting Endothelial Cells with Alginate for 3D Tissue Constructs," J. Biomech. Eng., Vol. 131, No. 11, pp. 111002, 2009. https://doi.org/10.1115/1.3128729
  19. Kolesky, D. B., Truby, R. L., Gladman, A., Busbee, T. A., Homan, K. A. and Lewis, J. A., "3D Bioprinting of Vascularized, Heterogeneous Cell-laden Tissue Constructs," Adv. Mater., Vol. 26, No. 19, pp. 3124-3130, 2014. https://doi.org/10.1002/adma.201305506
  20. Schuurman, W., Levett, P. A., Pot, M. W., van Weeren, P. R., Dhert, W. J., Hutmacher, D. W., Melchels, F. P. W., Klein, T. J., Malda, J., "Gelatin-Methacrylamide Hydrogels as Potential Biomaterials for Fabrication of Tissue-Engineered Cartilage Constructs," Macromolecular Biosci., Vol. 13, No. 5, pp. 551-561, 2013. https://doi.org/10.1002/mabi.201200471
  21. Duan, B., Hockaday, L. A., Kang, K. H. and Butcher, J. T., "3D Bioprinting of Heterogeneous Aortic Valve Conduits with Alginate/gelatin Hydrogels," J. Biomedical Mater. Research Part A, Vol. 101, No. 5, pp. 1255-1264, 2013.
  22. Pati, F., Jang, J., Ha, D.-H., Kim, S. W., Rhie, J.-W., Shim, J.-H., Kim, D.-H. and Cho, D.-W., "Printing Three-dimensional Tissue Analogues with Decellularized Extracellular Matrix Bioink," Nat. Commun., Vol. 5, 2014.
  23. Jeon, H. A., Lee, S. W. and Kwon, O. H., "Fabrication of Poly($\gamma$-glutamic acid) Porous Scaffold for Tissue Engineering Applications," J. Korean Soc. Manuf. Process Eng., Vol. 13, No. 3, pp. 35-41, 2014. https://doi.org/10.14775/ksmpe.2014.13.3.035
  24. Jeong, H. J., Jee, M.-H., Kim, S.-Y. and Lee, S.-J., "Measurement of the Compressive Force on the Knee Joint Model fabricated by 3D Printing," J. Korean Soc. Manuf. Process Eng., Vol. 13, No. 2, pp. 1-7, 2014. https://doi.org/10.14775/ksmpe.2014.13.2.001

Cited by

  1. Investigation of the Internal Stress Relaxation in FDM 3D Printing : Annealing Conditions vol.17, pp.4, 2018, https://doi.org/10.14775/ksmpe.2018.17.4.130
  2. Study on Electrical Characteristics of FDM Conductive 3D Printing According to Annealing Conditions vol.17, pp.6, 2018, https://doi.org/10.14775/ksmpe.2018.17.6.053
  3. 위치추적기를 내장한 산악용 신발 디자인 및 3D 다공성 폴리머 프린팅을 이용한 중창 제작에 관한 연구 vol.15, pp.6, 2015, https://doi.org/10.14775/ksmpe.2016.15.6.083
  4. 융합 소방용 안전모 개발을 위한 중요도-만족도 연관 분석 vol.15, pp.6, 2015, https://doi.org/10.14775/ksmpe.2016.15.6.109
  5. An Algorithm for the Removing of Offset Loop Twists during the Tool Path Generation of FDM 3D Printer vol.16, pp.3, 2017, https://doi.org/10.14775/ksmpe.2017.16.3.001
  6. 3차원스캐닝과 역설계를 이용한 트랙터 복합작업기 치수 검사 vol.16, pp.3, 2015, https://doi.org/10.14775/ksmpe.2017.16.3.045
  7. 금속 3D 프린팅으로 보수된 AISI H13 금형강 마모특성 평가 vol.16, pp.4, 2015, https://doi.org/10.14775/ksmpe.2017.16.4.009
  8. 레이저 소결 적층 시스템과 실험 계획법을 이용한 3차원 바이오 세라믹 인공지지체의 제작 vol.18, pp.12, 2015, https://doi.org/10.14775/ksmpe.2019.18.12.059
  9. Manufacturing Experiments using FDM 3D-printed Flexible Resistance Sensors with Heterogeneous Polymer Material Annealing vol.19, pp.1, 2015, https://doi.org/10.14775/ksmpe.2020.19.01.081
  10. 툴 체인지 방식 멀티 노즐 3D프린터의 설계 및 제작 vol.20, pp.2, 2015, https://doi.org/10.14775/ksmpe.2021.20.02.038