• Title/Summary/Keyword: 3차원 세포 프린팅

Search Result 11, Processing Time 0.029 seconds

3D 세포 프린팅을 위한 바이오 잉크

  • Gang, Hyeon-Uk
    • Journal of the KSME
    • /
    • v.55 no.11
    • /
    • pp.53-57
    • /
    • 2015
  • 최근 들어 살아 있는 다종의 세포를 이용하여 자유 3차원 구조물을 제작할 수 있는 세포 프린팅 기술이 많은 주목을 받고 있다. 이 기술은 장기 프린팅 혹은 바이오 프린팅 기술로도 많이 불린다. 바이오 잉크는 세포 프린팅 기술의 구현에서 가장 핵심적인 요소이다. 프린팅 공정이 잉크의 성질을 고려하여 디자인되기 때문에, 잉크를 잘 이해하는 것이 세포 프린팅 공정의 핵심을 파악하는 가장 빠른 길이다. 이 글에서는 이러한 바이오 잉크가 가져야할 특성과 현재까지 소개된 잉크 소재 및 이와 관련된 프린팅 공정에 관해 살펴보고자 한다.

  • PDF

Three-Dimensional Printed 3D Structure for Tissue Engineering (3 차원 프린팅 기술로 제작된 조직공학용 3 차원 구조체)

  • Park, Jeong Hun;Jang, Jinah;Cho, Dong-Woo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.38 no.10
    • /
    • pp.817-829
    • /
    • 2014
  • One of the main issues in tissue engineering has been the development of a three-dimensional (3D) structure, which is a temporary template that provides the structural support and microenvironment necessary for cell growth and differentiation into the target tissue. In tissue engineering, various biomaterials and their processing techniques have been applied for the fabrication of 3D structures. In particular, 3D printing technology enables the fabrication of a complex inner/outer architecture using a computer-aided design and manufacturing (CAD/CAM) system, and it has been widely applied to the fabrication of 3D structures for tissue engineering. Novel cell/organ printing techniques based on 3D printing have also been developed for the fabrication of a biomimetic structure with various cells and biomaterials. This paper presents a comprehensive review of the functional scaffold and cell-printed structures based on 3D printing technology and the application of this technology to various kinds of tissues regeneration.

Fabrication of spiral scaffolds with nano-etched surface by using an innovative 3D printing method (혁신적인 3D 프린팅 방법을 사용하여 나노-에칭된 표면을 갖은 나선형 세포담체 제작)

  • Yang, Ji-Hun;Lee, Jae-Yun;Kim, Geun-Hyeong
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2018.06a
    • /
    • pp.73-73
    • /
    • 2018
  • 조직재생공학은 조직이나 장기를 재생하고 유지하는 데 초점을 맞춘 종합 분야이다. 세포담체는 세포가 조직이나 장기로 발달 할 수 있도록 결정적인 역할을 한다. 따라서 공극률, 기공 크기, 기공 상호 연결성, 표면 거칠기, 기계적 강도 및 기하학과 같은 기본 요구 사항들은 중요한 특성으로 간주된다. Particle leaching, phase separation, solvent casting, gas foaming, selective laser sintering, fused deposition 및 3D dispensing (printing)과 같은 다양한 Rapid Prototyping 방법이 세포담체 제조에 사용되었다. 또한, 다양한 천연 및 합성 고분자가 세포담체를 제조하는데 사용되어왔다. 본 연구에서는 기존의 3D 프린팅 방법과 플라즈마 에칭 공정을 이용하여 나노 에칭 된 나선형 가닥으로 구성된 3 차원 세포담체를 제작 하였다. 제작 된 세포담체의 물리적 및 생물학적 성질을 비교 연구하기 위해, 본 연구에서는 매끄러운 가닥을 대조물로 사용하였다. 나노 에칭된 표면은 초기 세포 부착, 증식 및 골 형성 분화와 같은 세포 활동에 영향을 미쳤다.

  • PDF

3D Printing Technology and Its Application on Tissue Engineering and Regenerative Medicine (3D 프린팅 기술의 조직공학 및 재생의학 분야 응용)

  • Lee, Junhee;Park, Sua;Kim, Wan Doo
    • Transactions of the KSME C: Technology and Education
    • /
    • v.1 no.1
    • /
    • pp.21-26
    • /
    • 2013
  • In this paper, we introduced various 3D printing technology and it's application on tissue engineering and regenerative medicine. Using the 3D printing technology, Korea Institute of Machinery and Materials (KIMM) has developed 3D bio-printing system. Various 3D tissue engineered scaffolds have been fabricated by the 3D bio-printing system. Cell printing system has been also developed and it is the fundamental technology for organ regeneration in tissue engineering and regenerative medicine.

A Review of the Fabrication of Soft Structures with Three-dimensional Printing Technology (3차원 프린팅 기술을 이용한 연성 구조물 제작)

  • Jang, Jinah;Cho, Dong-Woo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.14 no.6
    • /
    • pp.142-148
    • /
    • 2015
  • 3D printing technology is a promising technique for fabricating complex 3D architectures based on the CAD/CAM system, and it has been extensively investigated to manufacture structures in the fields of mechanical engineering, space technology, automobiles, and biomedical and electrical applications. Recent advances in the 3D printing of soft structures have received attention for the application of the construction of flexible sensors of soft robotics or the recreation of tissue/organ-specific microenvironments. In this review paper, we would like to focus on delivering state-of-the-art fabrication of soft structures with 3D printing technology and its various applications.

실시간 고감도 온도 및 임피던스 측정 바이오센서 제작

  • Im, Gyeong-Seok;Sin, Hye-Seon;Jang, Mun-Gyu
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.343-343
    • /
    • 2016
  • 최근 사회적 이슈로 동물실험에 대한 규제가 강화되고 있어 동물실험을 대체할 새로운 방안의 중요성이 부각되고 있다. 이에 따라 현재 동물실험의 대체 방안의 하나로 3D 프린팅 기술을 활용한 3차원으로 배양된 인공장기에 대한 연구가 활발히 진행 중이다. 하지만 실시간으로 세포의 변화를 모니터링 할 수 있는 기술에 대한 연구는 많이 이루어지지 않고 있다. 본 연구에서는 3차원으로 배양된 세포에서 약물반응에 따른 세포변화를 실시간으로 분석할 수 있는 고감도 온도 및 임피던스 측정 바이오센서를 제작하였다. 센서 제작에 앞서 바이오센서로 사용하기 위해서는 세포를 안정적으로 성장시킬 수 있는 물질을 사용해야하며, 반도체공정으로 박막증착이 쉽고 물질변화가 크지 않도록 높은 work function(백금의 work function : 5.12~5.93 eV)을 가져야한다. 또한 온도 및 임피던스 측정을 위해 지표로 사용할 수 있는 TCR(Temperature Coefficient of Resistance)값이 온도에 따라 선형적으로 증가하는 특성을 가져야 한다. 위 조건들을 고려하여 센서물질로 백금을 선정하였다. 박막공정 및 열처리를 통하여 추출된 백금의 TCR은 $2045.9ppm/^{\circ}C$의 값을 가졌고, 추출된 백금의 TCR과 관계된 온도센서의 오차범위는 $0.01^{\circ}C$내에 있다. 이는 실시간으로 세포 변화를 분석할 수 있는 지표로써 활용되며, 고감도의 온도센서로써의 역할을 하기에 충분한 값이다.

  • PDF

Stem cell attached 3-dimentional printed polycarprolactone scaffold (줄기세포 탑재 3차원 프린팅 polycarprolactone 스캐폴드)

  • Hong, Gyusik;Cho, Jeong Hwan;Yun, Seokhwan;Choi, Eunjeong;An, Seongmin;Kim, Jung Seok;Lee, Jae Sam;Shim, Jin-hyung;Jin, Songwan;Yun, Won-Soo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.8
    • /
    • pp.618-626
    • /
    • 2019
  • Stem cell therapy is not expected to bestow any therapeutic benefit because of the low engraftment rates after transplantation.Various cell-carrying scaffolds have been developed in order to overcome this problem. When the scaffold is formed by 3-dimensional (3D) printing, it is possible to create various shapes of scaffolds for specific regions of injury. At the same time, scaffolds provide stem cells as therapeutic-agents and mechanically support an injured region. PCL is not only cost effective, but it is also a widely used material for 3D printing. Therefore, rapid and economical technology development can be achieved when PCL is printed and used as a cell carrier. Yet PCL materials do not perform well as cell carriers, and only a few cells survive on the PCL surface. In this study, we tried to determine the conditions that maximize the cell-loading capacity on the PCL surface to overcome this issue. By applying a plasma treated condition and then collagen coating known to improve the cell loading capacity, it was confirmed that the 3% collagen coating after plasma treatment showed the best cell engraftment capacity during 72 hours after cell loading. By applying the spheroid cell culture method and scaffold structure change, which can affect the cell loading ability, the spheroid cell culture methods vastly improved cell engraftment, and the scaffold structure did not affect the cell engraftment properties. We will conduct further experiments using PCL material as a cell carrier and as based the excellent results of this study.

Effect of Sodium Hydroxide Treatment on Scaffold by Solid Freeform Fabrication (조형가공기술을 이용한 인공지지체의 수산화나트륨 개질 효과)

  • Park, SuA;Lee, JungBok;Kim, YangEun;Kim, JiEun;Kwon, IlKeun;Lee, JunHee;Kim, WanDoo;Kim, HyungKeun;Kim, MiEun;Lee, JunSik
    • Polymer(Korea)
    • /
    • v.38 no.6
    • /
    • pp.815-819
    • /
    • 2014
  • Scaffolds of tissue engineering should be biocompatible and biodegradable for cell attachment, proliferation and differentiation. In the various scaffold fabrication, 3D printing technique can make the three dimensional scaffold with interconnected pores for cell ingrowth. Polycaprolactone (PCL) is biodegradable polyester with a low melting temperature and has been approved by the Food and Drug Administration (FDA). In this study, PCL scaffold was fabricated by 3D bioprinting system and surface modification of PCL scaffold was controlled by NaOH treatment. Morphological change and wetability of NaOH-treated scaffold were observed by SEM and contact angle measurement system. The remnant of PCL treated with NaOH was measured by ATR-FTIR. In vitro study of scaffolds was evaluated with WST-1 and ALP activity assay. NaOH treatment of PCL scaffolds increased surface roughness, hydrophilicity, cell proliferation and osteogenic differentiation. These results indicate that NaOH-treated PCL scaffold made by 3D bioprinting has tissue engineered potential for the development of biocompatible material.

Validation of Launch Vibration Isolation Performance of the Passive Vibration Isolator for the Scientific Payload BioCabinet for CAS500-3 (차세대중형위성 3호 과학탑재체 바이오캐비넷용 수동형 진동절연기의 발사진동 저감성능 검증)

  • Dong-Jae Seo;Yeon-Hyeok Park;Young-Jin Lee;Ji-Seung Lee;Kyung-Hee Kim;Soon-Hee Kim;Chan-Hum Park;Hyun-Ung Oh
    • Journal of Aerospace System Engineering
    • /
    • v.18 no.4
    • /
    • pp.81-88
    • /
    • 2024
  • The payload BioCabinet of CAS500-3 is designed for 3D stem cell differentiation, culture, and analysis utilizing bio 3D printing techniques in space. The 3D printing technique was initially developed for orbital use; however, it lacks separate validation for extreme launch vibration environments, necessitating a design that mitigates the launch load on the payload. This paper proposes a passive vibration isolator with a low-stiffness elastic support structure and high damping characteristics to reduce the launch loads affecting the BioCabinet. We explore the high-damping characteristics through the superelastic effects of SMA (Shape Memory Alloys) and a multi-layered structure incorporating viscoelastic tape. The effectiveness of the proposed vibration isolation system was confirmed via launch vibration tests on a qualification model.