References
- Agarwal, P. and Manuel, L. (2009), "Simulation of offshore wind turbine response for long-term extreme load prediction", Eng. Struct., 31(10), 2236-2246. https://doi.org/10.1016/j.engstruct.2009.04.002
- Barlas, T.K. and Van Kuik, G.A.M. (2009), "Aeroelastic modelling and comparison of advanced active flap control concepts for load reduction on the Upwind 5MW wind turbine", European Wind Energy Conference, Marseille, France.
- Bazilevs, Y., Hsu, M.C., Kiendl, J., Wuchner, R. and Bletzinger, K.U. (2011), "3D simulation of wind turbine rotors at full scale. Part II: Fluid-structure interaction modeling with composite blades", Int. J. Numer. Meth. Fluid., 65(1), 236-253. https://doi.org/10.1002/fld.2454
- Bazeos, N., Hatzigeorgiou, G.D., Hondros, I.D., Karamaneas, H., Karabalis, D.L. and Beskos, D.E. (2002), "Static, seismic and stability analyses of a prototype wind turbine steel tower", Eng. Struct., 24(8), 1015-1025. https://doi.org/10.1016/S0141-0296(02)00021-4
- Burton, T., Sharpe, D. and Jenkins, N. (2001), Wind Energy Handbook, John Wiley&Sons, Chichester.
- Corson, D.A., Griffith, D.T., Ashwill, T. and Shakib, F. (2012), "Investigating Aeroelastic performance of multi-megawatt wind turbine rotors using CFD", AIAA Structures, 53 rd Structural Dynamics and Materials Conference, Honolulu.
- Dai, J.C., Hu, Y.P., Liu, D.S. and Long, X. (2011), "Aerodynamic loads calculation and analysis for large scale wind turbine based on combining BEM modified theory with dynamic stall model", Renew. Energy, 36(3), 1095-1104. https://doi.org/10.1016/j.renene.2010.08.024
- Davenport, A.G. (1995), "How can we simplify and generalize wind loads?", J. Wind Eng. Indust. Aerodyn., 54, 657-669.
- Duquette, M.M. and Visser, K.D. (2003), "Numerical implications of solidity and blade number on rotor performance of horizontal-axis wind turbines", J. Sol. Energy Eng., 125(4), 425-432. https://doi.org/10.1115/1.1629751
- Hoogedoorn, E., Jacobs, G.B. and Beyene, A. (2010), "Aero-elastic behavior of a flexible blade for wind turbine application: A 2D computational study", Energy, 35(2), 778-785. https://doi.org/10.1016/j.energy.2009.08.030
- Hsu, M.H. (2008), "Dynamic behaviour of wind turbine blades. Proceedings of the Institution of Mechanical Engineers, Part C", J. Mech. Eng. Sci., 222(8), 1453-1464. https://doi.org/10.1243/09544062JMES759
- International Electrotechnical Commission (2006), Wind Turbine Generator Systems-1: Design Requirements, International Standard, Geneva.
- Jeong, M.S., Kim, S.W., Lee, I., Yoo, S.J. and Park, K.C. (2013), "The impact of yaw error on aeroelastic characteristics of a horizontal axis wind turbine blade", Renew. Energy, 60, 256-268. https://doi.org/10.1016/j.renene.2013.05.014
- Jimenez, A ., Crespo, A. and Migoya, E. (2010), "Application of a LES technique to characterize the wake deflection of a wind turbine in yaw", Wind Energy, 13(6), 559-572. https://doi.org/10.1002/we.380
- Kareem, A. (2008), "Numerical simulation of wind effects: a probabilistic perspective", J. Wind Eng. Indust. Aerodyn., 96(10), 1472-1497. https://doi.org/10.1016/j.jweia.2008.02.048
- Karimirad, M. and Moan, T. (2011), "Wave-and wind-induced dynamic response of a spar-type offshore wind turbine", J. Waterw. Port Coast. Ocean Eng., 138(1), 9-20. https://doi.org/10.1061/(ASCE)WW.1943-5460.0000087
- Ke, S.T., Wang, T.G., Ge, Y.J. and Yukio, T. (2014), "Wind-induced responses and equivalent static wind loads of tower-blade coupled large wind turbine system", Struct. Eng. Mech., 52(3), 485-505. https://doi.org/10.12989/sem.2014.52.3.485
- Lanzafame, R. and Messina, M. (2007), "Fluid dynamics wind turbine design: Critical analysis, optimization and application of BEM theory", Renew. Energy, 32(14), 2291-2305. https://doi.org/10.1016/j.renene.2006.12.010
- Liao, M.F. and Huang, W. (2009), "Fatigue characteristics analysis of wind turbine tower under wind-wave combined effect", Acta Energiae Solaris Sinica, 30(4), 488-492. (in Chinese)
- Lloyd, G. (2005), GL-2005 rules and guidelines IV-industrial services, part 2-guideline for the certification of offshore wind turbines, Germanischer Lloyd, Hamburg.
- Prowell, I., Veletzos, M., Elgamal, A. and Restrepo, J. (2009), "Experimental and numerical seismic response of a 65 kW wind turbine", J. Earthq. Eng., 13(8), 1172-1190. https://doi.org/10.1080/13632460902898324
- Tarp, J., Madsen, P.H. and Frandsen, S. (2002), Partial safety factors in the 3rd edition of IEC 61400 1: wind turbine generator systems-part 1: safety requirements, Riso National Laboratory.
- Shinozuka, M. and Seya, H. (1990), "Stochastic methods in wind engineering", J. Wind Eng. Indust. Aerodyn., 36(2), 1472-1497.
- Shen, X., Zhu, X. and Du, Z. (2011), "Wind turbine aerodynamics and loads control in wind shear flow", Energy, 36(3), 1424-1434. https://doi.org/10.1016/j.energy.2011.01.028
- Vermeer, L.J., Sorensen, J.N. and Crespo, A. (2003), "Wind turbine wake aerodynamics", Prog. Aerosp. Sci., 39(6), 467-510. https://doi.org/10.1016/S0376-0421(03)00078-2
- Veers, P.S., Ashwill, T.D., Sutherland, H.J. and et al. (2003), "Trends in the design, manufacture and evaluation of wind turbine rotor", Wind Energy, 6(3), 245-259. https://doi.org/10.1002/we.90
- Wang, L., Wang, T.G. and Luo, Y. (2011), "Improved non-dominated sorting genetic algorithm (NSGA)-II in multi-objective optimization studies of wind turbine blades", Appl. Math. Mech., 32, 739-748. https://doi.org/10.1007/s10483-011-1453-x
- Wang, T., Wang, L., Zhong, W., Xu, B. and Chen, L. (2012), "Large-scale wind turbine blade design and aerodynamic analysis", Chin. Sci. Bul., 57(5), 466-472. https://doi.org/10.1007/s11434-011-4856-6
- Zhang, L., Wu, H. and Jing, F.M. (2010), "Study on offshore floating wind turbine and its development", Ocean Tech., 29(4), 122-126.
Cited by
- Analysis of wind turbine blades aeroelastic performance under yaw conditions vol.171, 2017, https://doi.org/10.1016/j.jweia.2017.09.011
- Wind-induced fatigue of large HAWT coupled tower-blade structures considering aeroelastic and yaw effects 2018, https://doi.org/10.1002/tal.1467
- Statistical wind prediction and fatigue analysis for horizontal-axis wind turbine composite material blade under dynamic loads vol.9, pp.9, 2017, https://doi.org/10.1177/1687814017724088
- Deep neural network-based wind speed forecasting and fatigue analysis of a large composite wind turbine blade pp.2041-2983, 2018, https://doi.org/10.1177/0954406218797972
- Aerodynamic Performance and Wind-Induced Responses of Large Wind Turbine Systems with Meso-Scale Typhoon Effects vol.12, pp.19, 2015, https://doi.org/10.3390/en12193696
- Study on the Aerodynamic Performance of Floating Offshore Wind Turbine Considering the Tower Shadow Effect vol.9, pp.6, 2021, https://doi.org/10.3390/pr9061047