References
- T. Aoki, On the stability of the linear transformation in Banach spaces, J. Math. Soc. Japan, 2 (1959), 64-66.
- P. Gavruta, A generalization of the Hyers-Ulam-Rassias stability of approxi-mately additive mappings, J. Math. Anal. and Appl., 184 (1994), 431-436. https://doi.org/10.1006/jmaa.1994.1211
- D.H. Hyers, On the stability of the linear functional equation, Proc. Natl. Acad. Sci. USA, 27 (1941), 222-224. https://doi.org/10.1073/pnas.27.4.222
- S.-S. Jin and Y.-H. Lee, On the stability of the quadratic-additive type functional equation in random normed spaces via fixed point method, Korean J. Math., 20 (2012), 19-31. https://doi.org/10.11568/kjm.2012.20.1.019
- S.-M. Jung, Hyers-Ulam-Rassias Stability of Functional Equations in Nonlinear Analysis, Springer Optimization and Its Applications Vol. 4, Springer, New York, 2011
- Y.-H. Lee, On the quadratic additive type functional equations, Int. J. Math. Anal. (Ruse), 7 (2013), 1935-1948. https://doi.org/10.12988/ijma.2013.35112
- Y.-H. Lee and S.-M. Jung, A general uniqueness theorem concerning the stability of additive and quadratic functional equations, J. Funct. Spaces, 2015 (2015), Artcle ID 643969 8pages.
- Th.M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc., 72 (1978), 297-300. https://doi.org/10.1090/S0002-9939-1978-0507327-1
- S.M. Ulam, Problems in Modern Mathematics, Wiley, New York, 1964.