DOI QR코드

DOI QR Code

Wave propagation of a functionally graded beam in thermal environments

  • 투고 : 2014.10.20
  • 심사 : 2015.06.16
  • 발행 : 2015.12.25

초록

In this paper, the effect of material-temperature dependent on the wave propagation of a cantilever beam composed of functionally graded material (FGM) under the effect of an impact force is investigated. The beam is excited by a transverse triangular force impulse modulated by a harmonic motion. Material properties of the beam are temperature-dependent and change in the thickness direction. The Kelvin-Voigt model for the material of the beam is used. The considered problem is investigated within the Euler-Bernoulli beam theory by using energy based finite element method. The system of equations of motion is derived by using Lagrange's equations. The obtained system of linear differential equations is reduced to a linear algebraic equation system and solved in the time domain and frequency domain by using Newmark average acceleration method. In order to establish the accuracy of the present formulation and results, the comparison study is performed with the published results available in the literature. Good agreement is observed. In the study, the effects of material distributions and temperature rising on the wave propagation of the FGM beam are investigated in detail.

키워드

참고문헌

  1. Ait Yahia, S., Ait Atmane, H., Ahmed Houari, M.S. and Tounsi, A. (2015), "Wave propagation in functionally graded plates with porosities using various higher-order shear deformation plate theories", Struct. Eng. Mech., Int. J., 53(6), 1143-1165. https://doi.org/10.12989/sem.2015.53.6.1143
  2. Akbas, S.D. (2014a), "Wave propagation analysis of edge cracked beams resting on elastic foundation", Int. J. Eng. Appl. Sci., 6(1), 40-52.
  3. Akbas, S.D. (2014b), "Wave propagation analysis of edge cracked circular beams under impact force", Plos One, 9(6), e100496. https://doi.org/10.1371/journal.pone.0100496
  4. Akbas, S.D. (2015), "Wave propagation in edge cracked functionally graded beams under impact force", J. Vib. Control. DOI: 10.1177/1077546314547531
  5. Aksoy, H.G. and Senocak, E. (2009), "Wave propagation in functionally graded and layered materials", Finite Elem. Anal. Des., 45(12), 876-891. https://doi.org/10.1016/j.finel.2009.06.025
  6. Bin, W., Jiangong, Y. and Cunfu, H. (2008), "Wave propagation in non-homogeneous magneto-electroelastic plates", J. Sound Vib., 317(1-2), 250-264. https://doi.org/10.1016/j.jsv.2008.03.008
  7. Bouderba, B., Houari, M.S.A. and Tounsi, A. (2013), "Thermomechanical bending response of FGM thick plates resting on Winkler-Pasternak elastic foundations", Steel Compos. Struct., Int. J., 14(1), 85-104. https://doi.org/10.12989/scs.2013.14.1.085
  8. Bourada, M., Kaci, A., Ahmed Houari, M.S. and Tounsi, A. (2015), "A new simple shear and normal deformations theory for functionally graded beams", Steel Compos. Struct., Int. J., 18(2), 409-423. https://doi.org/10.12989/scs.2015.18.2.409
  9. Cao, X., Shi, J. and Jin, F. (2012), "Lamb wave propagation in the functionally graded piezoelectricpiezomagnetic material plate", Acta Mechanica, 223(5), 1081-1091. https://doi.org/10.1007/s00707-012-0612-5
  10. Chakraborty, A. and Gopalakrishnan, S. (2004), "Wave propagation in inhomogeneous layered media: Solution of forward and inverse problems", Acta Mechanica, 169(1-4), 153-185. https://doi.org/10.1007/s00707-004-0080-7
  11. Chakraborty, A. and Gopalakrishnan, S. (2005), "A spectral finite element for axial-flexural-shear coupled wave propagation analysis in lengthwise graded beam", Computat. Mech., 36(1), 1-12. https://doi.org/10.1007/s00466-004-0637-2
  12. Chakraborty, A., Gopalakrishnan, S. and Kausel, E. (2005), "Wave propagation analysis in inhomogeneous piezo-composite layer by the thin-layer method", Int. J. Numer. Method. Eng., 64(5), 567-598. https://doi.org/10.1002/nme.1375
  13. Chouvion, B., Fox, C.H.J., McWilliam, S. and Popov, A.A. (2010), "In-plane free vibration analysis of combined ring-beam structural systems by wave propagation", J. Sound Vib., 329(24), 5087-5104. https://doi.org/10.1016/j.jsv.2010.05.023
  14. Dinevay, P.S., Rangelov, T.V. and Manolis, G.D. (2007), "Elastic wave propagation in a class of cracked, functionally graded materials by BIEM", Computat. Mech., 39(3), 293-308.
  15. Du, J., Jin, X., Wang, J. and Xian, K. (2007), "Love wave propagation in functionally graded piezoelectric material layer", Ultrasonics, 46(1), 13-22. https://doi.org/10.1016/j.ultras.2006.09.004
  16. Gopalakrishnan, S. and Doyle, J.F. (1995), "Spectral super-elements for wave propagation in structures with local non-uniformities", Comput. Method. Appl. Mech. Eng., 121(1-4), 77-90. https://doi.org/10.1016/0045-7825(94)00686-H
  17. Farris, T.N. and Doyle, J.F. (1989), "Wave propagation in a split Timoshenko beam", J. Sound Vib., 130(1), 137-147. https://doi.org/10.1016/0022-460X(89)90524-5
  18. Frikha, A., Treyssede, F. and Cartraud, P. (2011), "Effect of axial load on the propagation of elastic waves in helical beams", Wave Motion, 48(1), 83-92. https://doi.org/10.1016/j.wavemoti.2010.08.001
  19. Islam, Z.M., Jia, P. and Lim, C.W. (2014), "Torsional wave propagation and vibration of circular nanostructures based on nonlocal elasticity theory", Int. J. Appl. Mech., 6(2), 1450011. https://doi.org/10.1142/S1758825114500112
  20. Jiangong, Y. and Qiujuan, M. (2010), "Wave characteristics in magneto-electro-elastic functionally graded spherical curved plates", Mech. Adv. Mater. Struct., 17(4), 287-301. https://doi.org/10.1080/15376490903556642
  21. Kang, B., Riedel, C.H. and Tan, C.A. (2003), "Free vibration analysis of planar curved beams by wave propagation", J. Sound Vib., 260(1), 19-44. https://doi.org/10.1016/S0022-460X(02)00898-2
  22. Ke, L.L., Yang, J., Kitipornchai, S. and Xiang, Y. (2009), "Flexural vibration and elastic buckling of a cracked Timoshenko beam made of functionally graded materials", Mech. Adv. Mater. Struct., 16(6), 488-502. https://doi.org/10.1080/15376490902781175
  23. Kocaturk, T, and Akbas, S.D. (2013), "Wave propagation in a microbeam based on the modified couple stress theory", Struct. Eng. Mech., Int. J., 46(3), 417-431. https://doi.org/10.12989/sem.2013.46.3.417
  24. Kocaturk, T., Eskin, A. and Akbas, S.D. (2011), "Wave propagation in a piecewise homegenous cantilever beam under impact force", Int. J. Phys. Sci., 6(16), 4013-4020.
  25. Krawczuk, M. (2002), "Application of Spectral beam finite element with a crack and iterative search technique to damage detection", Finite Elem. Anal. Des., 38(6), 537-548. https://doi.org/10.1016/S0168-874X(01)00084-1
  26. Krawczuk, M., Palacz, M. and Ostachowicz, W. (2002), "The dynamic analysis of a cracked Timoshenko beam by the spectral element method", J. Sound Vib., 264(5), 1139-1153. https://doi.org/10.1016/S0022-460X(02)01387-1
  27. Kumar, D.S., Mahapatra, D.R. and Gopalakrishnan, S. (2004), "A spectral finite element for wave propagation and structural diagnostic analysis of composite beam with transverse crack", Finite Elem. Anal. Des., 40(13-14), 1729-1751. https://doi.org/10.1016/j.finel.2004.01.001
  28. Lee, S.Y. and Yeen, W.F. (1990), "Free coupled longitudinal and flexural waves of a periodically supported beam", J. Sound Vib., 142(2), 203-211. https://doi.org/10.1016/0022-460X(90)90552-B
  29. Li, X.Y., Wang, Z.K. and Huang, S.H. (2004), "Love waves in functionally graded piezoelectric materials", Int. J. Solid. Struct., 41(26), 7309-7328. https://doi.org/10.1016/j.ijsolstr.2004.05.064
  30. Liu, Y. and Lu, F. (2012), "Dynamic stability of a beam on an elastic foundation including stress wave effects", Int. J. Appl. Mech., 4(2), 1250017. https://doi.org/10.1142/S1758825112500172
  31. Mahi, A., Adda Bedia, E.A. and Tounsi, A. (2015), "A new hyperbolic shear deformation theory for bending and free vibration analysis of isotropic, functionally graded, sandwich and laminated composite plates", Appl. Math. Model., 39(9), 2489-2508. https://doi.org/10.1016/j.apm.2014.10.045
  32. Molaei Najafabadi, M., Ahmadian, M.T. and Taati, E. (2014), "Effect of thermal wave propagation on thermoelastic behavior of functionally graded materials in a slab symmetrically surface heated using analytical modeling", Compos. Part B: Engineering, 60, 413-422. https://doi.org/10.1016/j.compositesb.2013.12.070
  33. Newmark, N.M. (1959), "A method of computation for structural dynamics", ASCE Eng. Mech. Div., 85(3), 67-94.
  34. Ostachowicz, W., Krawczuk, M., Cartmell, M. and Gilchrist, M. (2004), "Wave propagation in delaminated beam", Comput. Struct., 82(6), 475-483. https://doi.org/10.1016/j.compstruc.2003.11.001
  35. Palacz, M. and Krawczuk, M. (2002), "Analysis of longitudinal wave propagation in a cracked rod by the spectral element method", Comput. Struct., 80(24), 1809-1816. https://doi.org/10.1016/S0045-7949(02)00219-5
  36. Palacz, M., Krawczuk, M. and Ostachowicz, W. (2005a), "The spectral finite element model for analysis of flexural-shear coupled wave propagation, Part 1: Laminated multilayer composite beam", Compos. Struct., 68(1), 37-44. https://doi.org/10.1016/j.compstruct.2004.02.012
  37. Palacz, M., Krawczuk, M. and Ostachowicz, W. (2005b), "The spectral finite element model for analysis of flexural-shear coupled wave propagation. Part 2: Delaminated multilayer composite beam", Compos. Struct., 68(1), 45-51. https://doi.org/10.1016/j.compstruct.2004.02.013
  38. Park, J. (2008), "Identification of damage in beam structures using flexural wave propagation characteristics", J. Sound Vib., 318(4-5), 820-829. https://doi.org/10.1016/j.jsv.2008.05.008
  39. Reddy, J.N. and Chin, C.D. (1998), "Thermoelastical analysis of functionally graded cylinders and plates", J. Therm. Stress., 21(6), 593-626. https://doi.org/10.1080/01495739808956165
  40. Safari-Kahnaki, A., Hosseini, S.M. and Tahani, M. (2011), "Thermal shock analysis and thermo-elastic stress waves in functionally graded thick hollow cylinders using analytical method", Int. J. Mech. Mater. Des., 7(3), 167-184. https://doi.org/10.1007/s10999-011-9157-3
  41. Shariyat, M., Khaghani, M. and Lavasani, S.M.H. (2010), "Nonlinear thermoelasticity, vibration, and stress wave propagation analyses of thick FGM cylinders with temperature-dependent material properties", Eur. J. Mech., A/Solids, 29(3), 378-391. https://doi.org/10.1016/j.euromechsol.2009.10.007
  42. Shen, H.S. and Wang, Z.X. (2012), "Assessment of Voigt and Mori-Tanaka models for vibration analysis of functionally graded plates", Compos. Struct., 94(7), 2197-2208. https://doi.org/10.1016/j.compstruct.2012.02.018
  43. Sridhar, R., Chakraborty, A. and Gopalakrishnan, S. (2007), "Wave propagation analysis in anisotropic and inhomogeneous uncracked and cracked structures using pseudospectral finite element method", Int. J. Solid. Struct., 43(16), 4997-5031. https://doi.org/10.1016/j.ijsolstr.2005.10.005
  44. Sun, D. and Luo, S.-N. (2011a), "Wave propagation and transient response of a FGM plate under a point impact load based on higher-order shear deformation theory", Compos. Struct., 93(5), 1474-1484. https://doi.org/10.1016/j.compstruct.2010.12.002
  45. Sun, D. and Luo, S.-N. (2011b), "Wave propagation and transient response of functionally graded material circular plates under a point impact load", Compos. Part B: Engineering, 42(4), 657-665. https://doi.org/10.1016/j.compositesb.2011.02.020
  46. Sun, D. and Luo, S.-N. (2011c), "The wave propagation and dynamic response of rectangular functionally graded material plates with completed clamped supports under impulse load", Eur. J. Mech., A/Solids 30(3), 396-408. https://doi.org/10.1016/j.euromechsol.2011.01.001
  47. Sun, D. and Luo, S.-N. (2011d), "Wave propagation of functionally graded material plates in thermal environments", Ultrasonics, 51(8), 940-995. https://doi.org/10.1016/j.ultras.2011.05.009
  48. Sun, D. and Luo, S.-N. (2012), "Wave propagation and transient response of a functionally graded material plate under a point impact load in thermal environments", Appl. Math. Model., 36(1), 444-462. https://doi.org/10.1016/j.apm.2011.07.023
  49. Teh, K.K. and Huang, C.C. (1981), "Wave propagation in generally orthotropic beams", Fibre Sci. Technol., 14(4), 301-310. https://doi.org/10.1016/0015-0568(81)90021-X
  50. Tian, J., Li, Z. and Su, X. (2003), "Crack detection in beams by wavelet analysis of transient flexural waves", J. Sound Vib., 261(4), 715-727. https://doi.org/10.1016/S0022-460X(02)01001-5
  51. Touloukian, Y.S. (1967), Thermophysical Properties of High Temperature Solid Materials, Macmillan, New York, NY, USA.
  52. Tounsi, A., Houari, M.S.A., Benyoucef, S. and Adda Bedia, E.A. (2013), "A refined trigonometric shear deformation theory for thermoelastic bending of functionally graded sandwich plates", Aerosp. Sci. Technol., 24(1), 209-220. https://doi.org/10.1016/j.ast.2011.11.009
  53. Usuki, T. and Maki, A. (2003), "Behavior of beams under transverse impact according to higher-order beam theory", Int. J. Solid. Struct., 40(13-14), 3737-3785. https://doi.org/10.1016/S0020-7683(03)00142-2
  54. Vinod, K.G., Gopalakrishnan, S. and Ganguli, R. (2007), "Free vibration and wave propagation analysis of uniform and tapered rotating beams using spectrally formulated finite element", International Int. J. Solid. Struct., 44(18-19), 5875-5893. https://doi.org/10.1016/j.ijsolstr.2007.02.002
  55. Watanabe, Y. and Sugimoto, N. (2005), "Flexural wave propagation in a spatially periodic structure of articulated beams", Wave Motion, 42(2), 155-167. https://doi.org/10.1016/j.wavemoti.2005.01.001
  56. Yang, J. and Chen, Y. (2008), "Free vibration and buckling analyses of functionally graded beams with edge cracks", Compos. Struct., 83(1), 48-60. https://doi.org/10.1016/j.compstruct.2007.03.006
  57. Yokoyama, T. and Kishida, K. (1982), "Finite element analysis of flexural wave propagation in elastic beams", Technol. Reports of the Osaka University, 32(1642), 103-112.
  58. Zhu, H., Ding, L. and Yin, T. (2013), "Wave propagation and localization in a randomly disordered periodic piezoelectric axial-bending coupled beam", Adv. Struct. Eng., 16(9), 1513-1522. https://doi.org/10.1260/1369-4332.16.9.1513
  59. Zidi, M., Tounsi, A., Houari, M.S.A., Adda Bedia, E.A. and Anwar Beg, O. (2014), "Bending analysis of FGM plates under hygro-thermo-mechanical loading using a four variable refined plate theory", Aerosp. Sci. Technol., 34, 24-34. https://doi.org/10.1016/j.ast.2014.02.001

피인용 문헌

  1. Non-linear thermal post-buckling analysis of FGM Timoshenko beam under non-uniform temperature rise across thickness vol.19, pp.3, 2016, https://doi.org/10.1016/j.jestch.2016.05.014
  2. A simple hyperbolic shear deformation theory for vibration analysis of thick functionally graded rectangular plates resting on elastic foundations vol.11, pp.2, 2016, https://doi.org/10.12989/gae.2016.11.2.289
  3. Thermal stability analysis of solar functionally graded plates on elastic foundation using an efficient hyperbolic shear deformation theory vol.10, pp.3, 2016, https://doi.org/10.12989/gae.2016.10.3.357
  4. Thermo-mechanical postbuckling of symmetric S-FGM plates resting on Pasternak elastic foundations using hyperbolic shear deformation theory vol.57, pp.4, 2016, https://doi.org/10.12989/sem.2016.57.4.617
  5. Hygro-thermo-mechanical bending of S-FGM plates resting on variable elastic foundations using a four-variable trigonometric plate theory vol.18, pp.4, 2016, https://doi.org/10.12989/sss.2016.18.4.755
  6. Effect of porosity on vibrational characteristics of non-homogeneous plates using hyperbolic shear deformation theory vol.22, pp.4, 2016, https://doi.org/10.12989/was.2016.22.4.429
  7. A novel four variable refined plate theory for bending, buckling, and vibration of functionally graded plates vol.22, pp.3, 2016, https://doi.org/10.12989/scs.2016.22.3.473
  8. On thermal stability of plates with functionally graded coefficient of thermal expansion vol.60, pp.2, 2016, https://doi.org/10.12989/sem.2016.60.2.313
  9. Thermal post-buckling behavior of imperfect temperature-dependent sandwich FGM plates resting on Pasternak elastic foundation vol.22, pp.1, 2016, https://doi.org/10.12989/scs.2016.22.1.091
  10. A new simple three-unknown sinusoidal shear deformation theory for functionally graded plates vol.22, pp.2, 2016, https://doi.org/10.12989/scs.2016.22.2.257
  11. A spectral element model for thermal effect on vibration and buckling of laminated beams based on trigonometric shear deformation theory vol.133, 2017, https://doi.org/10.1016/j.ijmecsci.2017.07.059
  12. Size-dependent mechanical behavior of functionally graded trigonometric shear deformable nanobeams including neutral surface position concept vol.20, pp.5, 2016, https://doi.org/10.12989/scs.2016.20.5.963
  13. An efficient shear deformation theory for wave propagation of functionally graded material plates vol.57, pp.5, 2016, https://doi.org/10.12989/sem.2016.57.5.837
  14. An efficient and simple shear deformation theory for free vibration of functionally graded rectangular plates on Winkler-Pasternak elastic foundations vol.22, pp.3, 2016, https://doi.org/10.12989/was.2016.22.3.329
  15. Thermal stability of functionally graded sandwich plates using a simple shear deformation theory vol.58, pp.3, 2016, https://doi.org/10.12989/sem.2016.58.3.397
  16. A novel quasi-3D hyperbolic shear deformation theory for functionally graded thick rectangular plates on elastic foundation vol.12, pp.1, 2015, https://doi.org/10.12989/gae.2017.12.1.009
  17. Non-linear study of mode II delamination fracture in functionally graded beams vol.23, pp.3, 2015, https://doi.org/10.12989/scs.2017.23.3.263
  18. Transient thermo-mechanical response of a functionally graded beam under the effect of a moving heat source vol.6, pp.1, 2015, https://doi.org/10.12989/amr.2017.6.1.027
  19. A simple analytical approach for thermal buckling of thick functionally graded sandwich plates vol.63, pp.5, 2015, https://doi.org/10.12989/sem.2017.63.5.585
  20. A four variable refined nth-order shear deformation theory for mechanical and thermal buckling analysis of functionally graded plates vol.13, pp.3, 2015, https://doi.org/10.12989/gae.2017.13.3.385
  21. Vibration analysis of nonlocal advanced nanobeams in hygro-thermal environment using a new two-unknown trigonometric shear deformation beam theory vol.20, pp.3, 2015, https://doi.org/10.12989/sss.2017.20.3.369
  22. A new and simple HSDT for thermal stability analysis of FG sandwich plates vol.25, pp.2, 2015, https://doi.org/10.12989/scs.2017.25.2.157
  23. A novel simple two-unknown hyperbolic shear deformation theory for functionally graded beams vol.64, pp.2, 2015, https://doi.org/10.12989/sem.2017.64.2.145
  24. Free vibration of functionally graded plates resting on elastic foundations based on quasi-3D hybrid-type higher order shear deformation theory vol.20, pp.4, 2017, https://doi.org/10.12989/sss.2017.20.4.509
  25. An efficient and simple four variable refined plate theory for buckling analysis of functionally graded plates vol.25, pp.3, 2015, https://doi.org/10.12989/scs.2017.25.3.257
  26. A novel and simple higher order shear deformation theory for stability and vibration of functionally graded sandwich plate vol.25, pp.4, 2017, https://doi.org/10.12989/scs.2017.25.4.389
  27. Investigating vibration behavior of smart imperfect functionally graded beam subjected to magnetic-electric fields based on refined shear deformation theory vol.5, pp.4, 2017, https://doi.org/10.12989/anr.2017.5.4.281
  28. Nonlinear static analysis of functionally graded porous beams under thermal effect vol.6, pp.4, 2017, https://doi.org/10.12989/csm.2017.6.4.399
  29. A new quasi-3D HSDT for buckling and vibration of FG plate vol.64, pp.6, 2015, https://doi.org/10.12989/sem.2017.64.6.737
  30. Post-buckling analysis of shear-deformable composite beams using a novel simple two-unknown beam theory vol.65, pp.5, 2015, https://doi.org/10.12989/sem.2018.65.5.621
  31. A novel four variable refined plate theory for wave propagation in functionally graded material plates vol.27, pp.1, 2018, https://doi.org/10.12989/scs.2018.27.1.109
  32. Geometrically nonlinear analysis of a laminated composite beam vol.66, pp.1, 2015, https://doi.org/10.12989/sem.2018.66.1.027
  33. Large deflection analysis of a fiber reinforced composite beam vol.27, pp.5, 2015, https://doi.org/10.12989/scs.2018.27.5.567
  34. A novel four-unknown quasi-3D shear deformation theory for functionally graded plates vol.27, pp.5, 2015, https://doi.org/10.12989/scs.2018.27.5.599
  35. Thermal buckling of FGM beams having parabolic thickness variation and temperature dependent materials vol.27, pp.6, 2015, https://doi.org/10.12989/scs.2018.27.6.777
  36. Geometrically nonlinear analysis of functionally graded porous beams vol.27, pp.1, 2015, https://doi.org/10.12989/was.2018.27.1.059
  37. A new plate model for vibration response of advanced composite plates in thermal environment vol.67, pp.4, 2015, https://doi.org/10.12989/sem.2018.67.4.369
  38. Hygro-thermal post-buckling analysis of a functionally graded beam vol.8, pp.5, 2019, https://doi.org/10.12989/csm.2019.8.5.459
  39. An analytical solution for bending and free vibration responses of functionally graded beams with porosities: Effect of the micromechanical models vol.69, pp.2, 2015, https://doi.org/10.12989/sem.2019.69.2.231
  40. Detection of flaw in steel anchor-concrete composite using high-frequency wave characteristics vol.31, pp.4, 2015, https://doi.org/10.12989/scs.2019.31.4.341
  41. The effect of parameters of visco-Pasternak foundation on the bending and vibration properties of a thick FG plate vol.18, pp.2, 2015, https://doi.org/10.12989/gae.2019.18.2.161
  42. Forced vibration analysis of functionally graded sandwich deep beams vol.8, pp.3, 2015, https://doi.org/10.12989/csm.2019.8.3.259
  43. Static analysis of functionally graded sandwich plates with porosities vol.8, pp.3, 2015, https://doi.org/10.12989/amr.2019.8.3.155
  44. Static and free vibration behavior of functionally graded sandwich plates using a simple higher order shear deformation theory vol.8, pp.4, 2019, https://doi.org/10.12989/amr.2019.8.4.313
  45. A study on the structural behaviour of functionally graded porous plates on elastic foundation using a new quasi-3D model: Bending and free vibration analysis vol.25, pp.1, 2020, https://doi.org/10.12989/cac.2020.25.1.037
  46. Nonlocal vibration of DWCNTs based on Flügge shell model using wave propagation approach vol.34, pp.4, 2020, https://doi.org/10.12989/scs.2020.34.4.599
  47. Propagation of Flexural Waves in Anisotropic Fluid-Conveying Cylindrical Shells vol.12, pp.6, 2020, https://doi.org/10.3390/sym12060901
  48. Vibration analysis of FGM beam: Effect of the micromechanical models vol.9, pp.3, 2015, https://doi.org/10.12989/csm.2020.9.3.265
  49. Dynamic responses of laminated beams under a moving load in thermal environment vol.35, pp.6, 2015, https://doi.org/10.12989/scs.2020.35.6.729
  50. Static Analysis of a Fiber Reinforced Composite Beam Resting on Winkler-Pasternak Foundation vol.12, pp.3, 2015, https://doi.org/10.24107/ijeas.790858
  51. Dynamic analysis of a laminated composite beam under harmonic load vol.9, pp.6, 2020, https://doi.org/10.12989/csm.2020.9.6.563
  52. Influences of porosity distributions and boundary conditions on mechanical bending response of functionally graded plates resting on Pasternak foundation vol.38, pp.1, 2015, https://doi.org/10.12989/scs.2021.38.1.001
  53. Monitoring and control of multiple fraction laws with ring based composite structure vol.10, pp.2, 2021, https://doi.org/10.12989/anr.2021.10.2.129
  54. Effect of suction on flow of dusty fluid along exponentially stretching cylinder vol.10, pp.3, 2015, https://doi.org/10.12989/anr.2021.10.3.263
  55. Bending analysis of functionally graded plates using a new refined quasi-3D shear deformation theory and the concept of the neutral surface position vol.39, pp.1, 2021, https://doi.org/10.12989/scs.2021.39.1.051
  56. On the free vibration response of laminated composite plates via FEM vol.39, pp.2, 2015, https://doi.org/10.12989/scs.2021.39.2.149
  57. Influence of micromechanical models on the bending response of bidirectional FG beams under linear, uniform, exponential and sinusoidal distributed loading vol.39, pp.2, 2021, https://doi.org/10.12989/scs.2021.39.2.215
  58. An efficient higher order shear deformation theory for free vibration analysis of functionally graded shells vol.40, pp.2, 2015, https://doi.org/10.12989/scs.2021.40.2.307
  59. Influence of the visco-Pasternak foundation parameters on the buckling behavior of a sandwich functional graded ceramic-metal plate in a hygrothermal environment vol.170, pp.None, 2022, https://doi.org/10.1016/j.tws.2021.108549