참고문헌
- Aboudi, J. (1991), Mechanics of Composite Materials - A Unified Micromechanical Approach, Elsevier, Amsterdam.
- Alibeigloo, A. (2010), "Exact solution for thermo-elastic response of functionally graded rectangular plates", Compos. Struct., 92, 113-121. https://doi.org/10.1016/j.compstruct.2009.07.003
- Alieldin, S.S., Alshorbagy, A.E. and Shaat, M. (2011), "A first-order shear deformation finite element model for elastostatic analysis of laminated composite plates and the equivalent functionally graded plates", Ain Sham. Eng. J., 2, 53-6. https://doi.org/10.1016/j.asej.2011.05.003
- Alshorbagy, A.E., Alieldin, S.S., Shaat, M. and Mahmoud, F.F. (2013), "Finite element analysis of the deformation of functionally graded plates under thermomechanical loads", Math. Prob. Eng., 2013, 13.
- Arbind, A. and Reddy, J.N. (2013), "Nonlinear analysis of functionally graded microstructure-dependent beams", Compos. Struct., 98, 272-281. https://doi.org/10.1016/j.compstruct.2012.10.003
- Bafekrpour, E., Simon, G.P., Habsuda, J., Naebe, M., Yang, C. and Fox, B. (2012), "Fabrication and characterization of functionally graded synthetic graphite/phenolic nanocomposites", Mater. Sci. Eng. A, 545, 123-131. https://doi.org/10.1016/j.msea.2012.02.097
- Bharti, I., Gupta, N. and Gupta, K.M. (2013), "Novel applications of functionally graded nano, optoelectronic and thermoelectric materials", Int. J. Mater. Mech. Manuf., 1(3), 221-224.
- Birman, V. and Byrd, L.W. (2007), "Modeling and analysis of functionally graded materials and structures", Appl. Mech. Rev., 60, 195-216. https://doi.org/10.1115/1.2777164
- Chen, Y., Lee, J.D. and Eskandarian, A. (2004), "Atomistic viewpoint of the applicability of micro continuum theories", Int. J. Solid. Struct., 41, 2085-2097. https://doi.org/10.1016/j.ijsolstr.2003.11.030
- Chi, S.H. and Chung, Y.L. (2006), "Mechanical behavior of functionally graded material plates under transverse load-Part I: analysis", Int. J. Solid. Struct., 43, 3657-3674. https://doi.org/10.1016/j.ijsolstr.2005.04.011
- Chong, A.C.M., Yang, F., Lam, D.C.C. and Tong, P. (2001), "Torsion and bending of micron-scaled structures", J. Mater. Res., 16(4), 1052-8. https://doi.org/10.1557/JMR.2001.0146
- Cosserat, E. and Cosserat, F. (1909), Theory of deformable bodies, A. Hermann etFils, Paris.
- Delale, F. and Erdogan, F. (1983), "The crack problem for a nonhomogeneous plane", ASME J. Appl. Mech., 50, 609-614. https://doi.org/10.1115/1.3167098
- Edelen, D.G.B. (1969), "Protoelastic bodies with large deformation", Arch. Rat. Mech. Anal., 34, 283-300.
- Eringen, A.C. and Suhubi, E.S. (1964), "Nonlinear theory of simple micro-elastic solids-I", Int. J. Eng. Sci., 2, 189-203. https://doi.org/10.1016/0020-7225(64)90004-7
- Eringen, A.C. (1966), "A unified theory of thermomechanical materials", Int. J. Eng. Sci., 4, 179-202. https://doi.org/10.1016/0020-7225(66)90022-X
- Eringen, A.C. (1999), Microcontinuum Field Theories I: Foundations and Solids, Springer-Verlag, New York.
- Fu, Y. and Zhang, J. (2010), "Modeling and analysis of microtubules based on a modified couple stress theory", Phy. E: Low-Dimen. Syst. Nanostruct., 42(5), 1741-5. https://doi.org/10.1016/j.physe.2010.01.033
- Gao, X.L. and Mahmoud, F.F. (2014), "A new Bernoulli-Euler beam model incorporating microstructure and surface energy effects", Z. Angew. Math. Phys., 65 (2), 393-404. https://doi.org/10.1007/s00033-013-0343-z
- Guo, J.G. and Zhao, Y.P. (2005), "The size-dependent elastic properties of nanofilms with surface effects", J. Appl. Phys., 98, 11.
- Guo, J.G. and Zhao, Y.P. (2007), "The size-dependent bending elastic properties of nanobeams with surface effects", Nanotechnol., 18, 6.
- Gurtin, M.E. and Murdoch, A.I. (1975), "A continuum theory of elastic material surface", Arch. Ration. Mech. Anal., 57, 291-323.
- Gurtin, M.E. and Murdoch, A.I. (1978), "Surface stress in solids", Int. J. Solid. Struct., 14, 431-440. https://doi.org/10.1016/0020-7683(78)90008-2
- Hadjesfandiari, A.R. and Dargush, G.F. (2011), "Couple stress theory for solids", Int. J. Solid. Struct., 48, 2496-2510. https://doi.org/10.1016/j.ijsolstr.2011.05.002
- Hill, R. (1965), "A self-consistent mechanics of composite materials", J. Mech. Phys. Solid., 13, 213-222. https://doi.org/10.1016/0022-5096(65)90010-4
- Jomehzadeh, E., Noori, H.R. and Saidi, A.R. (2011), "The size-dependent vibration analysis of micro plates based on a modified couple stress theory", Phys. E: Low-Dimen. Syst. Nanostruct., 43(4), 877-83. https://doi.org/10.1016/j.physe.2010.11.005
- Kahrobaiyan, M.H., Asghari, M., Rahaeifard, M. and Ahmadian, M.T. (2010), "Investigation of the sizedependent dynamic characteristics of atomic force microscope microcantilevers based on the modified couple stress theory", Int. J. Eng. Sci., 48(12), 1985-94. https://doi.org/10.1016/j.ijengsci.2010.06.003
- Ke, L.L. and Wang, Y.S. (2011), "Flow-induced vibration and instability of embedded doublewalled carbon nanotubes based on a modified couple stress theory", Phys. E: Low-Dimens. Syst. Nanostruct., 43(5), 1031-9. https://doi.org/10.1016/j.physe.2010.12.010
- Ke, L.L., Wang, Y.S. and Wang, Z.D. (2011), "Thermal effect on free vibration and buckling of sizedependent microbeams", Phys. E: Low-Dimens. Syst. Nanostruct., 43(7), 1387-93. https://doi.org/10.1016/j.physe.2011.03.009
- Ke, L.L., Wang, Y.S., Yang, J. and Kitipornchai, S. (2012), "Free vibration of size-dependent Mindlinmicroplates based on the modified couple stress theory", J. Sound. Vib., 331(1), 94-106. https://doi.org/10.1016/j.jsv.2011.08.020
- Koiter, W.T. (1964), "Couple stresses in the theory of elasticity, I and II", Nederl. Akad. Wetensch. Proc. Ser. B, 67, 17-44.
- Kong, S., Zhou, S., Nie, Z. and Wang, K. (2008), "The size-dependent natural frequency of Bernoulli-Euler micro-beams", Int. J. Eng. Sci., 46(5), 427-37. https://doi.org/10.1016/j.ijengsci.2007.10.002
- Lam, D.C.C., Yang, F., Chong, A.C.M., Wang, J. and Tong, P. (2003), "Experiments and theory in strain gradient elasticity", J. Mech. Phys. Solid., 51(8), 1477-508. https://doi.org/10.1016/S0022-5096(03)00053-X
- Lu, P., He, L.H. and Lu, C. (2006), "Thin plate theory including surface effects", Int. J. Solid. Struct., 43(16), 4631-4647. https://doi.org/10.1016/j.ijsolstr.2005.07.036
- Lu, C.F., Lim, C.W. and Chen, W.Q. (2009), "Size-dependent elastic behavior of FGM ultra-thin films based on generalized refined theory", Int. J. Solid. Struct., 46, 1176-1185. https://doi.org/10.1016/j.ijsolstr.2008.10.012
- Ma, H.M., Gao, X.L. and Reddy, J.N. (2008), "A microstructure-dependent Timoshenko beam model based on a modified couple stress theory", J. Mech. Phys. Solids, 56(12), 3379-91. https://doi.org/10.1016/j.jmps.2008.09.007
- Ma, H.M., Gao, X.L. and Reddy, J.N. (2011), "A non-classical Mindlin plate model based on a modified couple stress theory", Acta. Mech., 220(1-4), 217-35. https://doi.org/10.1007/s00707-011-0480-4
- Mahmoud, F.F., Eltaher, M.A., Alshorbagy, A.E. and Meletis, E.I. (2012), "Static analysis of nanobeams including surface effects by nonlocal finite element", J. Mech. Sci. Technol., 26(11), 3555-3563. https://doi.org/10.1007/s12206-012-0871-z
- Mindlin, R.D. and Tiersten, H.F. (1962), "Effects of couple stresses in linear elasticity", Arch. Rational Mech. Anal., 11, 415-448. https://doi.org/10.1007/BF00253946
- Mindlin, R.D. (1964), "Microstructure in linear elasticity", Arch. Rational Mech. Anal., 16, 51-78.
- Mori, T. and Tanaka, K. (1973), "Average stress in matrix and average elastic energy of materials with misfitting inclusions", Acta. Metall., 21, 571-574. https://doi.org/10.1016/0001-6160(73)90064-3
- Park, S.K. and Gao, X.L. (2006), "Bernoulli-Euler beam model based on a modified couple stress theory", J. Micromech. Microeng., 16, 2355. https://doi.org/10.1088/0960-1317/16/11/015
- Rokni, H., Seethaler, R.J., Milani, A.S., Hashemi, S.H. and Li, X.F. (2013), "Analytical closed-form solutions for size-dependent static pull-in behavior in electrostatic micro-actuators via Fredholm integral equation", Sens. Actuat. A, 190, 32- 43. https://doi.org/10.1016/j.sna.2012.10.035
- Ru, C.Q. (2010), "Simple geometrical explanation of Gurtin-Murdoch model of surface elasticity with clarification of its related versions", J. Phys. Mech. Astron., 53, 536-544. https://doi.org/10.1007/s11433-010-0144-8
- Shaat, M., Mahmoud, F.F., Alshorbagy, A.E., Alieldin, S.S. and Meletis, E.I. (2012), "Size-dependent analysis of functionally graded ultra-thin films", Struct. Eng. Mech., 44(4), 431-448. https://doi.org/10.12989/sem.2012.44.4.431
- Shaat, M., Eltaher, M.A., Gad, A.I. and Mahmoud, F.F. (2013a), "Nonlinear size-dependent finite element analysis of functionally graded elastic tiny-bodies", Int. J. Mech. Sci., 77, 356-64. https://doi.org/10.1016/j.ijmecsci.2013.04.015
- Shaat, M., Mahmoud, F.F., Alshorbagy, A. E. and Alieldin, S. S. (2013b), "Bending Analysis of Ultra-thin Functionally Graded Mindlin Plates Incorporating Surface Energy Effects", International Journal of Mechanical Sciences, 75, 223-232. https://doi.org/10.1016/j.ijmecsci.2013.07.001
- Shaat, M., Mahmoud, F.F., Alieldin, S.S. and Alshorbagy, A.E. (2013c), "Finite element analysis of functionally graded nano-scale films", Finite Elem. Anal. Des., 74, 41-52. https://doi.org/10.1016/j.finel.2013.05.012
- Shaat, M. and Mohamed, S.A. (2014), "Nonlinear-electrostatic analysis of micro-actuated beams based on couple stress and surface elasticity theories", Int. J. Mech. Sci., 84, 208-217. https://doi.org/10.1016/j.ijmecsci.2014.04.020
- Shaat, M., Mahmoud, F.F., Gao, X.L. and Faheem, A.F. (2014), "Size-dependent bending analysis of Kirchhoff nano-plates based on a modified couple-stress theory including surface effects", Int. J. Mech. Sci., 79, 31-37. https://doi.org/10.1016/j.ijmecsci.2013.11.022
- Thai, H.T. and Choi, D.H. (2013), "Size-dependent functionally graded Kirchhoff and Mindlin plate models based on a modified couple stress theory", Compos. Struct., 95, 142-153. https://doi.org/10.1016/j.compstruct.2012.08.023
- Toupin, R.A. (1962), "Elastic materials with couple-stresses", Arch. Rational Mech. Anal., 11, 385-414. https://doi.org/10.1007/BF00253945
- Tsiatas, G.C. (2009), "A new Kirchhoff plate model based on a modified couple stress theory", Int. J. Solid. Struct., 46(13), 2757-64. https://doi.org/10.1016/j.ijsolstr.2009.03.004
- Wang, Z.Q. and Zhao, Y.P. (2009), "Self-instability and bending behaviors of nano plates", Acta Mechanica Solida Sinica, 22(6), 630-643. https://doi.org/10.1016/S0894-9166(09)60393-1
- Wang, Z.Q. and Zhao, Y.P. (2011), "Thermo-hyperelastic models for nanostructured materials", Sci. China:Phys. Mech. Astron., 54, 948-956. https://doi.org/10.1007/s11433-011-4299-8
- Wang, Z.Q., Zhao, Y.P. and Huang, Z.P. (2010), "The effects of surface tension on the elastic properties of nano structures", Int. J. Eng. Sci., 48, 140-150. https://doi.org/10.1016/j.ijengsci.2009.07.007
- Yaghoobi, H. and Fereidoon, A. (2010), "Influence of neutral surface position on deflection of functionally graded beam under uniformly distributed load", World Appl. Sci. J., 10(3), 337-341. https://doi.org/10.3923/jas.2010.337.342
- Yang, F., Chong, A.C.M., Lam, D.C.C. and Tong, P. (2002), "Couple stress based strain gradient theory for elasticity", Int. J. Solid. Struct., 39(10), 2731-43. https://doi.org/10.1016/S0020-7683(02)00152-X
- Yin, L., Qian, Q., Wang, L. and Xia, W. (2010), "Vibration analysis of microscale plates based on modified couple stress theory", Acta Mechanica Solida Sinica, 23(5), 386-93. https://doi.org/10.1016/S0894-9166(10)60040-7
피인용 문헌
- Size-dependent behavior of viscoelastic nanoplates incorporating surface energy and microstructure effects vol.123, 2017, https://doi.org/10.1016/j.ijmecsci.2017.01.045
- Modeling and Vibration Characteristics of Cracked Nano-Beams Made of Nanocrystalline Materials vol.115-116, 2016, https://doi.org/10.1016/j.ijmecsci.2016.07.037
- Surface effects on nonlinear vibration of embedded functionally graded nanoplates via higher order shear deformation plate theory 2018, https://doi.org/10.1080/15376494.2017.1410908
- Mode localization phenomenon of functionally graded nanobeams due to surface integrity pp.1573-8841, 2018, https://doi.org/10.1007/s10999-018-9421-x
- Surface effects on flutter instability of nanorod under generalized follower force vol.64, pp.6, 2015, https://doi.org/10.12989/sem.2017.64.6.723
- Modelling of graded rectangular micro-plates with variable length scale parameters vol.65, pp.5, 2015, https://doi.org/10.12989/sem.2018.65.5.573
- Fluid-conveying piezoelectric nanosensor: Nonclassical effects on vibration-stability analysis vol.76, pp.5, 2015, https://doi.org/10.12989/sem.2020.76.5.619