DOI QR코드

DOI QR Code

A new mindlin FG plate model incorporating microstructure and surface energy effects

  • Mahmoud, F.F. (Mechanical Engineering Department, Zagazig University) ;
  • Shaat, M. (Mechanical Engineering Department, Zagazig University)
  • 투고 : 2014.06.30
  • 심사 : 2014.10.02
  • 발행 : 2015.01.10

초록

In this paper, the classical continuum mechanics is adopted and modified to be consistent with the unique behavior of micro/nano solids. At first, some kinematical principles are discussed to illustrate the effect of the discrete nature of the microstructure of micro/nano solids. The fundamental equations and relations of the modified couple stress theory are derived to illustrate the microstructural effects on nanostructures. Moreover, the effect of the material surface energy is incorporated into the modified continuum theory. Due to the reduced coordination of the surface atoms a residual stress field, namely surface pretension, is generated in the bulk structure of the continuum. The essential kinematical and kinetically relations of nano-continuums are derived and discussed. These essential relations are used to derive a size-dependent model for Mindlin functionally graded (FG) nano-plates. An analytical solution is derived to show the feasibility of the proposed size-dependent model. A parametric study is provided to express the effect of surface parameters and the effect of the microstructure couple stress on the bending behavior of a simply supported FG nano plate.

키워드

참고문헌

  1. Aboudi, J. (1991), Mechanics of Composite Materials - A Unified Micromechanical Approach, Elsevier, Amsterdam.
  2. Alibeigloo, A. (2010), "Exact solution for thermo-elastic response of functionally graded rectangular plates", Compos. Struct., 92, 113-121. https://doi.org/10.1016/j.compstruct.2009.07.003
  3. Alieldin, S.S., Alshorbagy, A.E. and Shaat, M. (2011), "A first-order shear deformation finite element model for elastostatic analysis of laminated composite plates and the equivalent functionally graded plates", Ain Sham. Eng. J., 2, 53-6. https://doi.org/10.1016/j.asej.2011.05.003
  4. Alshorbagy, A.E., Alieldin, S.S., Shaat, M. and Mahmoud, F.F. (2013), "Finite element analysis of the deformation of functionally graded plates under thermomechanical loads", Math. Prob. Eng., 2013, 13.
  5. Arbind, A. and Reddy, J.N. (2013), "Nonlinear analysis of functionally graded microstructure-dependent beams", Compos. Struct., 98, 272-281. https://doi.org/10.1016/j.compstruct.2012.10.003
  6. Bafekrpour, E., Simon, G.P., Habsuda, J., Naebe, M., Yang, C. and Fox, B. (2012), "Fabrication and characterization of functionally graded synthetic graphite/phenolic nanocomposites", Mater. Sci. Eng. A, 545, 123-131. https://doi.org/10.1016/j.msea.2012.02.097
  7. Bharti, I., Gupta, N. and Gupta, K.M. (2013), "Novel applications of functionally graded nano, optoelectronic and thermoelectric materials", Int. J. Mater. Mech. Manuf., 1(3), 221-224.
  8. Birman, V. and Byrd, L.W. (2007), "Modeling and analysis of functionally graded materials and structures", Appl. Mech. Rev., 60, 195-216. https://doi.org/10.1115/1.2777164
  9. Chen, Y., Lee, J.D. and Eskandarian, A. (2004), "Atomistic viewpoint of the applicability of micro continuum theories", Int. J. Solid. Struct., 41, 2085-2097. https://doi.org/10.1016/j.ijsolstr.2003.11.030
  10. Chi, S.H. and Chung, Y.L. (2006), "Mechanical behavior of functionally graded material plates under transverse load-Part I: analysis", Int. J. Solid. Struct., 43, 3657-3674. https://doi.org/10.1016/j.ijsolstr.2005.04.011
  11. Chong, A.C.M., Yang, F., Lam, D.C.C. and Tong, P. (2001), "Torsion and bending of micron-scaled structures", J. Mater. Res., 16(4), 1052-8. https://doi.org/10.1557/JMR.2001.0146
  12. Cosserat, E. and Cosserat, F. (1909), Theory of deformable bodies, A. Hermann etFils, Paris.
  13. Delale, F. and Erdogan, F. (1983), "The crack problem for a nonhomogeneous plane", ASME J. Appl. Mech., 50, 609-614. https://doi.org/10.1115/1.3167098
  14. Edelen, D.G.B. (1969), "Protoelastic bodies with large deformation", Arch. Rat. Mech. Anal., 34, 283-300.
  15. Eringen, A.C. and Suhubi, E.S. (1964), "Nonlinear theory of simple micro-elastic solids-I", Int. J. Eng. Sci., 2, 189-203. https://doi.org/10.1016/0020-7225(64)90004-7
  16. Eringen, A.C. (1966), "A unified theory of thermomechanical materials", Int. J. Eng. Sci., 4, 179-202. https://doi.org/10.1016/0020-7225(66)90022-X
  17. Eringen, A.C. (1999), Microcontinuum Field Theories I: Foundations and Solids, Springer-Verlag, New York.
  18. Fu, Y. and Zhang, J. (2010), "Modeling and analysis of microtubules based on a modified couple stress theory", Phy. E: Low-Dimen. Syst. Nanostruct., 42(5), 1741-5. https://doi.org/10.1016/j.physe.2010.01.033
  19. Gao, X.L. and Mahmoud, F.F. (2014), "A new Bernoulli-Euler beam model incorporating microstructure and surface energy effects", Z. Angew. Math. Phys., 65 (2), 393-404. https://doi.org/10.1007/s00033-013-0343-z
  20. Guo, J.G. and Zhao, Y.P. (2005), "The size-dependent elastic properties of nanofilms with surface effects", J. Appl. Phys., 98, 11.
  21. Guo, J.G. and Zhao, Y.P. (2007), "The size-dependent bending elastic properties of nanobeams with surface effects", Nanotechnol., 18, 6.
  22. Gurtin, M.E. and Murdoch, A.I. (1975), "A continuum theory of elastic material surface", Arch. Ration. Mech. Anal., 57, 291-323.
  23. Gurtin, M.E. and Murdoch, A.I. (1978), "Surface stress in solids", Int. J. Solid. Struct., 14, 431-440. https://doi.org/10.1016/0020-7683(78)90008-2
  24. Hadjesfandiari, A.R. and Dargush, G.F. (2011), "Couple stress theory for solids", Int. J. Solid. Struct., 48, 2496-2510. https://doi.org/10.1016/j.ijsolstr.2011.05.002
  25. Hill, R. (1965), "A self-consistent mechanics of composite materials", J. Mech. Phys. Solid., 13, 213-222. https://doi.org/10.1016/0022-5096(65)90010-4
  26. Jomehzadeh, E., Noori, H.R. and Saidi, A.R. (2011), "The size-dependent vibration analysis of micro plates based on a modified couple stress theory", Phys. E: Low-Dimen. Syst. Nanostruct., 43(4), 877-83. https://doi.org/10.1016/j.physe.2010.11.005
  27. Kahrobaiyan, M.H., Asghari, M., Rahaeifard, M. and Ahmadian, M.T. (2010), "Investigation of the sizedependent dynamic characteristics of atomic force microscope microcantilevers based on the modified couple stress theory", Int. J. Eng. Sci., 48(12), 1985-94. https://doi.org/10.1016/j.ijengsci.2010.06.003
  28. Ke, L.L. and Wang, Y.S. (2011), "Flow-induced vibration and instability of embedded doublewalled carbon nanotubes based on a modified couple stress theory", Phys. E: Low-Dimens. Syst. Nanostruct., 43(5), 1031-9. https://doi.org/10.1016/j.physe.2010.12.010
  29. Ke, L.L., Wang, Y.S. and Wang, Z.D. (2011), "Thermal effect on free vibration and buckling of sizedependent microbeams", Phys. E: Low-Dimens. Syst. Nanostruct., 43(7), 1387-93. https://doi.org/10.1016/j.physe.2011.03.009
  30. Ke, L.L., Wang, Y.S., Yang, J. and Kitipornchai, S. (2012), "Free vibration of size-dependent Mindlinmicroplates based on the modified couple stress theory", J. Sound. Vib., 331(1), 94-106. https://doi.org/10.1016/j.jsv.2011.08.020
  31. Koiter, W.T. (1964), "Couple stresses in the theory of elasticity, I and II", Nederl. Akad. Wetensch. Proc. Ser. B, 67, 17-44.
  32. Kong, S., Zhou, S., Nie, Z. and Wang, K. (2008), "The size-dependent natural frequency of Bernoulli-Euler micro-beams", Int. J. Eng. Sci., 46(5), 427-37. https://doi.org/10.1016/j.ijengsci.2007.10.002
  33. Lam, D.C.C., Yang, F., Chong, A.C.M., Wang, J. and Tong, P. (2003), "Experiments and theory in strain gradient elasticity", J. Mech. Phys. Solid., 51(8), 1477-508. https://doi.org/10.1016/S0022-5096(03)00053-X
  34. Lu, P., He, L.H. and Lu, C. (2006), "Thin plate theory including surface effects", Int. J. Solid. Struct., 43(16), 4631-4647. https://doi.org/10.1016/j.ijsolstr.2005.07.036
  35. Lu, C.F., Lim, C.W. and Chen, W.Q. (2009), "Size-dependent elastic behavior of FGM ultra-thin films based on generalized refined theory", Int. J. Solid. Struct., 46, 1176-1185. https://doi.org/10.1016/j.ijsolstr.2008.10.012
  36. Ma, H.M., Gao, X.L. and Reddy, J.N. (2008), "A microstructure-dependent Timoshenko beam model based on a modified couple stress theory", J. Mech. Phys. Solids, 56(12), 3379-91. https://doi.org/10.1016/j.jmps.2008.09.007
  37. Ma, H.M., Gao, X.L. and Reddy, J.N. (2011), "A non-classical Mindlin plate model based on a modified couple stress theory", Acta. Mech., 220(1-4), 217-35. https://doi.org/10.1007/s00707-011-0480-4
  38. Mahmoud, F.F., Eltaher, M.A., Alshorbagy, A.E. and Meletis, E.I. (2012), "Static analysis of nanobeams including surface effects by nonlocal finite element", J. Mech. Sci. Technol., 26(11), 3555-3563. https://doi.org/10.1007/s12206-012-0871-z
  39. Mindlin, R.D. and Tiersten, H.F. (1962), "Effects of couple stresses in linear elasticity", Arch. Rational Mech. Anal., 11, 415-448. https://doi.org/10.1007/BF00253946
  40. Mindlin, R.D. (1964), "Microstructure in linear elasticity", Arch. Rational Mech. Anal., 16, 51-78.
  41. Mori, T. and Tanaka, K. (1973), "Average stress in matrix and average elastic energy of materials with misfitting inclusions", Acta. Metall., 21, 571-574. https://doi.org/10.1016/0001-6160(73)90064-3
  42. Park, S.K. and Gao, X.L. (2006), "Bernoulli-Euler beam model based on a modified couple stress theory", J. Micromech. Microeng., 16, 2355. https://doi.org/10.1088/0960-1317/16/11/015
  43. Rokni, H., Seethaler, R.J., Milani, A.S., Hashemi, S.H. and Li, X.F. (2013), "Analytical closed-form solutions for size-dependent static pull-in behavior in electrostatic micro-actuators via Fredholm integral equation", Sens. Actuat. A, 190, 32- 43. https://doi.org/10.1016/j.sna.2012.10.035
  44. Ru, C.Q. (2010), "Simple geometrical explanation of Gurtin-Murdoch model of surface elasticity with clarification of its related versions", J. Phys. Mech. Astron., 53, 536-544. https://doi.org/10.1007/s11433-010-0144-8
  45. Shaat, M., Mahmoud, F.F., Alshorbagy, A.E., Alieldin, S.S. and Meletis, E.I. (2012), "Size-dependent analysis of functionally graded ultra-thin films", Struct. Eng. Mech., 44(4), 431-448. https://doi.org/10.12989/sem.2012.44.4.431
  46. Shaat, M., Eltaher, M.A., Gad, A.I. and Mahmoud, F.F. (2013a), "Nonlinear size-dependent finite element analysis of functionally graded elastic tiny-bodies", Int. J. Mech. Sci., 77, 356-64. https://doi.org/10.1016/j.ijmecsci.2013.04.015
  47. Shaat, M., Mahmoud, F.F., Alshorbagy, A. E. and Alieldin, S. S. (2013b), "Bending Analysis of Ultra-thin Functionally Graded Mindlin Plates Incorporating Surface Energy Effects", International Journal of Mechanical Sciences, 75, 223-232. https://doi.org/10.1016/j.ijmecsci.2013.07.001
  48. Shaat, M., Mahmoud, F.F., Alieldin, S.S. and Alshorbagy, A.E. (2013c), "Finite element analysis of functionally graded nano-scale films", Finite Elem. Anal. Des., 74, 41-52. https://doi.org/10.1016/j.finel.2013.05.012
  49. Shaat, M. and Mohamed, S.A. (2014), "Nonlinear-electrostatic analysis of micro-actuated beams based on couple stress and surface elasticity theories", Int. J. Mech. Sci., 84, 208-217. https://doi.org/10.1016/j.ijmecsci.2014.04.020
  50. Shaat, M., Mahmoud, F.F., Gao, X.L. and Faheem, A.F. (2014), "Size-dependent bending analysis of Kirchhoff nano-plates based on a modified couple-stress theory including surface effects", Int. J. Mech. Sci., 79, 31-37. https://doi.org/10.1016/j.ijmecsci.2013.11.022
  51. Thai, H.T. and Choi, D.H. (2013), "Size-dependent functionally graded Kirchhoff and Mindlin plate models based on a modified couple stress theory", Compos. Struct., 95, 142-153. https://doi.org/10.1016/j.compstruct.2012.08.023
  52. Toupin, R.A. (1962), "Elastic materials with couple-stresses", Arch. Rational Mech. Anal., 11, 385-414. https://doi.org/10.1007/BF00253945
  53. Tsiatas, G.C. (2009), "A new Kirchhoff plate model based on a modified couple stress theory", Int. J. Solid. Struct., 46(13), 2757-64. https://doi.org/10.1016/j.ijsolstr.2009.03.004
  54. Wang, Z.Q. and Zhao, Y.P. (2009), "Self-instability and bending behaviors of nano plates", Acta Mechanica Solida Sinica, 22(6), 630-643. https://doi.org/10.1016/S0894-9166(09)60393-1
  55. Wang, Z.Q. and Zhao, Y.P. (2011), "Thermo-hyperelastic models for nanostructured materials", Sci. China:Phys. Mech. Astron., 54, 948-956. https://doi.org/10.1007/s11433-011-4299-8
  56. Wang, Z.Q., Zhao, Y.P. and Huang, Z.P. (2010), "The effects of surface tension on the elastic properties of nano structures", Int. J. Eng. Sci., 48, 140-150. https://doi.org/10.1016/j.ijengsci.2009.07.007
  57. Yaghoobi, H. and Fereidoon, A. (2010), "Influence of neutral surface position on deflection of functionally graded beam under uniformly distributed load", World Appl. Sci. J., 10(3), 337-341. https://doi.org/10.3923/jas.2010.337.342
  58. Yang, F., Chong, A.C.M., Lam, D.C.C. and Tong, P. (2002), "Couple stress based strain gradient theory for elasticity", Int. J. Solid. Struct., 39(10), 2731-43. https://doi.org/10.1016/S0020-7683(02)00152-X
  59. Yin, L., Qian, Q., Wang, L. and Xia, W. (2010), "Vibration analysis of microscale plates based on modified couple stress theory", Acta Mechanica Solida Sinica, 23(5), 386-93. https://doi.org/10.1016/S0894-9166(10)60040-7

피인용 문헌

  1. Size-dependent behavior of viscoelastic nanoplates incorporating surface energy and microstructure effects vol.123, 2017, https://doi.org/10.1016/j.ijmecsci.2017.01.045
  2. Modeling and Vibration Characteristics of Cracked Nano-Beams Made of Nanocrystalline Materials vol.115-116, 2016, https://doi.org/10.1016/j.ijmecsci.2016.07.037
  3. Surface effects on nonlinear vibration of embedded functionally graded nanoplates via higher order shear deformation plate theory 2018, https://doi.org/10.1080/15376494.2017.1410908
  4. Mode localization phenomenon of functionally graded nanobeams due to surface integrity pp.1573-8841, 2018, https://doi.org/10.1007/s10999-018-9421-x
  5. Surface effects on flutter instability of nanorod under generalized follower force vol.64, pp.6, 2015, https://doi.org/10.12989/sem.2017.64.6.723
  6. Modelling of graded rectangular micro-plates with variable length scale parameters vol.65, pp.5, 2015, https://doi.org/10.12989/sem.2018.65.5.573
  7. Fluid-conveying piezoelectric nanosensor: Nonclassical effects on vibration-stability analysis vol.76, pp.5, 2015, https://doi.org/10.12989/sem.2020.76.5.619