DOI QR코드

DOI QR Code

Growth and changes in the biochemical composition of Isochrysis galbana under different light-emitting diode conditions

  • BAE, Jae-Hyun (Fisheries Resources and Environment Research Division, East Sea Fisheries Research Institute) ;
  • AN, Heui-Chun (Fisheries Engineering Research Division, National Institute of Fisheries Science) ;
  • PARK, Heum-Gi (Department of Marine Bioscience, Gangneung-Wonju National University) ;
  • PARK, Jin-Chul (East Coastal Life Science Institute Gangneung-Wonju National University) ;
  • PARK, Jong-Myung (Fisheries Resources and Environment Research Division, East Sea Fisheries Research Institute) ;
  • LEE, Kyoung-Hoon (School of Marine Production Management, Chonnam National University) ;
  • HONG, Sung-Eic (Bada Ecology Research)
  • Received : 2015.11.02
  • Accepted : 2015.11.25
  • Published : 2015.11.30

Abstract

The marine microalgae Isochrysis galbana was cultured under various light-emitting diode (LED) light conditions with different wavelengths to examine changes in growth and in amino acid and fatty acid profiles. The culture conditions for the microalgae were Conway medium, salinity of 33 psu, temperature of $24^{\circ}C$, and a 16/8 h light/dark photoperiod. Six light sources, including 5 units of 180W LED lamps (peak wavelength: blue [LB] 470 nm; green [LG] 525 nm; yellow [LY] 595 nm; red [LR] 636 nm; white [LW] 442 nm) and 1 unit of a 175W metal halide (MH) lamp, were used for the experiment. The dry cell weights ($gL^{-1}$) of I. galbana under different light conditions were in the order of LW>LB${\geq}$MH>LR>LG>LY. Levels of essential amino acids were revealed to be significantly higher under LW, LG, and MH than under the other wavelengths (P<0.05). The fatty acid, unsaturated fatty acid, and DHA contents of I. galbana were higher under MH, LW, and LG. In addition, the carotenoid content was higher under MH, LW, and LG than under the other wavelengths (P<0.05). The fucoxanthin content was highest under MH (0.28%) and lowest under LY (0.2%), and it was 0.26% under LW and LG. The results indicate that the combined use of LW and LG is effective when using LED lamps for I. galbana cultivation.

Keywords

References

  1. Bang GW and Kim YH. 2012. LED for plant growth regulators for the study of light on the device. J Kor Soc Digit Poli Manag, 10, 267-272.
  2. Belarbi EH, Molina E and Chisti Y. 2000. A process for high yield and scaleable recovery of high purity eicosapentaenoic acid esters from microalgae and fish oil. Proc Biochem, 35, 951-969.(doi:10.1016/s0032-9592(00)00126-6)
  3. Ben-Amotz A, Katz A and Avron M. 1989. Mode of Action of the Massively Accumulated ${\beta}$-carotene of Dunaliella bardawil in Protecting the Alga against Damage by Excess Irradiation. Plant Physiol 91, 1040-1043. (doi:10.1104/pp.91.3.1040)
  4. Blanchard GF and Montagna PA. 1992. Photosynthetic response of natural assemblages of marine benthic microalgae to short-term and long-term variations of incident in Baffin Bay. J Phycol 28, 7-14. (doi:10.1111/j.0022-3646.1992.00007)
  5. Brown MR. 1991. The amino-acid and sugar composition of 16 species of microalgae used in mariculture. J Exp Mar Biol Ecol 145, 75-99. (doi:10.1016/0022-0981(91)90007-j)
  6. Brown MR and Jeffrey SW. 1992. Biochmocal composition of microalgae from the green algal classes Chlorophyceae and Prasinophyceae. 1. Amino acids, sugars and pigments. J Exp Mar Biol Ecol 161, 91-113. (doi:10.1016/0022-0981(92)90192-d)
  7. Brown MR, Garland CD, Jeffrey SW, Jameson JD and Leroi JM. 1993. The gross and amino acid compositions of batch and semi-continuous cultures of Isochrysis sp. (clone TISO), Pavlovalutheri and Nannochloropsisoculata. J Appl Phycol 5, 285-296. (doi:10.1007/bf02186231)
  8. Carvalho AP and Malcata FX. 2000. Effect of culture media on production of polyunsaturated fatty acids by Pavlovalutheri. Cryptogamie Algol 21, 59-73. (doi:10.1016/s0181-1568(00)00101-x)
  9. Choi SJ. 2008. Comparison of Radiation Characteristics and Radiant Quantities per unit Electrical Power between High Luminance Light Emitting Diode and Fishing Lamp Light Source. J Kor Fish Soc 41, 511-517. (doi:10.5657/kfas.2008.41.6.511)
  10. Chu FE and Webb KL. 1984. Polyunsaturated fatty acids and neutral lipids in developing larvae of the oyster, Crassostrea virginica. Lipids 19, 815-820. (doi:10.1007/bf02534509)
  11. Chung WJ, Wang M, Choi SG, Kim JK and Jeong BC. 1999. High Cell Density Cultures of Micro-algal Dunaliella bardawil. Korean J Biotechnol Bioeng 14, 160-166.
  12. Cook PM. 1951. Chemical engineering problems in large scale culture of algae. J Ind Eng Chem 43, 2385-2389. (doi:10.1021/ie50502a056)
  13. Correa-Reyes JG, Sanchez-Saavedra MP, Siqueiros-Beltrones DA and Flores-Acevedo N. 2001. Isolation and growth of eight strains of benthic diatoms, cultured under two light conditions. J Shellfish Res 20, 603-610.
  14. Das P, Wang L, Aziz SS and Jeffrey PO. 2011. Enhanced algae growth in both phototrophic and mixotrophic culture under blue light. Bioresource Technol 102, 3883-3887. (doi:10.1016/j.biortech.2010.11.102)
  15. Duncan DB. 1955. Multiple-range and multiple F-tests. Biometrics 11, 1-42. (doi:10.2307/3001478)
  16. Flaak AR and Epifanio CE. 1978. Dietary protein levels and growth of the oyster Crassostrea virginica. Mar Biol 15, 157-163. (doi:10.1007/bf00390551)
  17. Fuentes MMR, Fernandez GGA, Perez JAS and Guerrero JLG. 2000. Biomass nutrient profiles of the microalga Porphyridium cruentum. Food Chem 70, 345-353. (doi:10.1016/s0308-8146(00)00101-1)
  18. Gummert F, Meffert ME and Stratmann H. 1953. Non-sterile large scale culture of chlorella in greenhouse and open air. In Algal culture from Laboratory to Pilot Plant, J.S. Burlew, Ed., Carnegie Institution of Washington Publication, Washington DC, pp 166-176.
  19. Jeffrey SW, Mantoura RFC and Wright SW. 1997. Phytoplankton Pigments in Oceanography. UNESCO Publishing, Paris.
  20. Jeffrey SW and Vesk M. 1997. Effects of blue-green light on photosynthetic pigments and chloroplast structure in the marine diatom Stephanopyxis turris. J Phycol 13, 271-279. (doi:10.1111/j.1529-8817.1977.tb02927.x)
  21. Lamers PP, van de Laak CC, Kaasenbrood PS, Lorier J, Janssen M, De Vos C, Bino RJ and Wijffels RH. 2010. Carotenoid and fatty acid metabolism in light-stressed Dunaliella saline. Biotechnol Bioeng 106, 638-648. (doi:10.1002/bit.22725)
  22. Langdon CJ and Walcock MJ. 1981. The effect of algal and artificial diets on the growth and fatty acid composition of Crassostrea gigas Spat. J Mar Bio Ass UK 61, 431-448. (doi:10.1017/s0025315400047056)
  23. Lichtenthaler HK and Wellburn AR. 1983. Determination of total carotenoids and chlorophyll a and b of leaf extract in different solvents. Biochem Soc Trans 11, 591-592. (doi:10.1042/bst0110591)
  24. Lid AJ and Abalde HC. 1992. High yield mixotrophic culture of the marine microalga Tetraselmis suecica (kylin) Butcher (Prasinophyceae). J Appl Phycol 4, 31-37. (doi:10.1007/bf00003958)
  25. Mascio P, Kaiser S and Sies H. 1989. Lycopene as the most efficient biological carotenoid singlet oxygen quencher. Arch Biochem Biophys 274, 532-538. (doi:10.1016/0003-9861(89)90467-0)
  26. Morrison WR and Smith LM. 1964. Preparation of fatty acid meth ylesters and dimethyl acetata from lipids with boron trifluoride-methanol. J Lipid Res 5, 600-608.
  27. Nelson NB and Prezelin BB. 1990. Chromatic light effects and physiological modeling of absorption properties of Heterocapsa pygmaea (=Glenodinium sp.). Mar Ecol Prog Ser 63, 37-46. (doi:10.3354/meps063037)
  28. Oh HM, Choi AR and Mheen TI. 2003. High-Value Materials from Microalgae. J Microbiol Biotechnol 31, 95-102.
  29. Oh SJ, Park DS, Yang HS, Yoon YH and Honjo T. 2007. Bioremediation on the Benthic Layer in Polluted Inner Bay by Promotion of Microphytobenthos Growth Using Light Emitting Diode (LED). J Kor Soc Mar Environ Eng 10, 93-101
  30. Park MO and Park JS. 1997. HPLC method for the analysis of chlorophylls and carotenoids from marine phytoplankton. J Kor Soc Oceanogr 32, 46-55.
  31. Parrish CC. 1987. Separation of aquatic lipid classes by Chromarod thin-layer chromatography with measurement by Iatroscan flame ionization detection. Can J Fish Aquat Sci 44, 722-731. (doi:10.1016/0198-0254(87)95872-9)
  32. Rocha JM, Garcia JE and Henriques MH. 2003. Growth aspects of the marine microalga Nannochloropsis gaditana. Biomol Eng 20, 237-242. (doi:10.1016/s1389-0344(03)00061-3)
  33. Sanchez-saavedra MP and Voltolina D. 1994. The Chemical composition of Chaetoceros sp. (Bacillariophyceae) under different light conditions. Comp Biochem Physiol - Part B: Biochem 107, 39-44. (doi:10.1016/0305-0491(94)90222-4)
  34. Schofield O, Bidigare RR and Prezelin BB. 1990. Spectral photosynthesis quantum yield and blue-green light enhancement of productivity rates in the diatom Chaetoceros gracile and prymnesiophyte Emiliania huxleyi. Mar Ecol Prog Ser 64, 175-186. (doi:10.3354/meps064175)
  35. Seyfabadi J, Ramezanpour Z and Zahra AK. 2011. Protein, fatty acid, and pigment content of Chlorella vulgaris under different light regimes. J Appl Phycol 23, 721-726. (doi:10.1007/s10811-010-9569-8)
  36. Shamsudin L. 1992. Lipid and fatty acid composition of microalgae used in Malaysian aquaculture as live food for the early stage of penaeid larvae. J Appl Phycol 4, 371-378. (doi:10.1007/bf02185795)
  37. Sun YY and Wang CH. 2009. The Optimal Growth Conditions for the Biomass Production of Isochrysis galbana and the Effects That Phosphorus, $Zn^{2+}$, $CO_2$, and Light Intensity Have on the Biochemical composition of Isochrysis galbana and the Activity of Extracellular CA. Biotechnol Bioproc Eng 14, 225-231. (doi:10.1007/s12257-008-0013-8)
  38. Tremblin G, Cannuel R, Mouget JL, Rech M and Robert JM. 2000. Change in light quality due to a blue-green pigment, mariennine, released in oyster-ponds: effect on growth and photosynthesis in two diatoms, Haslea ostrearia and skeletonema costatum. J Appl Phycol 12, 557-566. https://doi.org/10.1023/A:1026502713075
  39. Volkman JK, Jeffrey SW, Nichols PD, Rogers GI and Garland CD. 1989. Fatty acid and lipid composition of 10 species of microalgae used in mariculture. J Exp Mar Biol Ecol 128, 219-240. (doi:10.1016/0022-0981(89)90029-4)
  40. Wallen DG and Geen GH. 1971. Light quality in relation to growth, photosynthetic rates and carbon metabolism in two species of marine plankton algae. Mar Biol 10, 34-43. (doi: 10.1007/bf02026764)
  41. Walne PR. 1979. Culture of bivalve molluscs, 50 year's experience at Conwy. The whitefriars Press Ltd London, p 189.
  42. Wang CY, Fu CC and Liu YC. 2007. Effects of using light-emitting diodes on the cultivation of Spirulina platensis. Biochem Eng J 37, 21-25. (doi:10.1016/j.bej.2007.03.004)
  43. Watanabe T, Kitajima C and Jujita S. 1983. Nutrition value of live organisms used in Japan for mass propagation of fish: A review. Aquaculture 34, 115-143. (doi:10.1016/0044-8486(83)90296-x)
  44. Webb KL and Chu FE. 1983. Phytoplankton as a food source for bivalve larvae. In Proceedings of the 2nd International Conference, World Mariculture Society, Spcc Publ Louisiana State University, Louisiana, USA, pp 272-291
  45. Yoshioka M, Yago T, Yoshie-Stark Y, Arakawa H and Morinaga T. 2012. Effect of high frequency of intermittent light on the growth and fatty acid profile of Isochrysis galbana. Aquaculture 338, 111-117. (doi:10.1016/j.aquaculture.2012.01.005)
  46. Zapata M, Rodriguez F and Garrido JL. 2000. Separation of chlorophylls and carotenoids from marine phytoplankton: a new HPLC method using a reversed phase C8 column and pyridine containing mobile phases. Mar Ecol Prog Ser 195, 29-45. (doi:10.3354/meps195029)