DOI QR코드

DOI QR Code

Seasonal Variation of Picocyanobacterial Community Composition in Seawaters Around Dokdo, Korea

독도 해역 초미소남세균 다양성의 계절적 변동

  • CHOI, DONG HAN (Marine Ecosystem and Biological Research Center, Korea Institute of Ocean Science and Technology (KIOST)) ;
  • AN, SUNG MIN (Marine Ecosystem and Biological Research Center, Korea Institute of Ocean Science and Technology (KIOST)) ;
  • CHOI, YU RI (Marine Ecosystem and Biological Research Center, Korea Institute of Ocean Science and Technology (KIOST)) ;
  • ROH, HYUN SOO (Dokdo Research Center, East Sea Research Institute, Korea Institute of Ocean Science and Technology (KIOST)) ;
  • NOH, JAE HOON (Marine Ecosystem and Biological Research Center, Korea Institute of Ocean Science and Technology (KIOST))
  • 최동한 (한국해양과학기술원 생태기반연구센터) ;
  • 안성민 (한국해양과학기술원 생태기반연구센터) ;
  • 최유리 (한국해양과학기술원 생태기반연구센터) ;
  • 노현수 (한국해양과학기술원 동해연구소 독도전문연구센터) ;
  • 노재훈 (한국해양과학기술원 생태기반연구센터)
  • Received : 2015.10.23
  • Accepted : 2015.11.12
  • Published : 2015.11.30

Abstract

Picophytoplankton, a group of tiny microorganisms of less than $3{\mu}m$, play an important role as a major primary producer in tropical open ocean as well as temperate coastal waters. Until now, more than 20 and 10 clades of Synechococcus and Prochlorococcus, respectively, have been identified in various marine environments, and its biogeographical distribution have been well studied as well as ecological niches of its major clades. To understand a distribution of diverse picocyanobacterial clades and environmental factors regulating their distribution, picocyanobacterial abundance and genetic diversity was investigated in adjacent waters of Dokdo showing diverse physical properties not only by seasonal variation but also by diverse physical processes. Synechococcus abundances were low in winter and then exponentially increased as water temperature increased up to $20^{\circ}C$. Above $20^{\circ}C$, the abundances tended to be saturated. On the contrary, Prochlorococcus was undetected or occupied a minor fraction of picocyanobacteria in most seasons. In summer, however, Prochlorococcus belonging to HLII ecotype occupied a significant fraction (up to 7%) of picocyanobacteria. In spring and early summer, the steep increase of Synechococcus abundances were resulted from growth of cold water-adapted Synechococcus belonging to clades I and IV. In summer, diverse Synechococcus clades including warm and pelagic water-favoring clade II tended to replace clades I and IV with maintaining high abundance. The water-column stability as well as temperature were found to be important factors regulating the Synechococcus abundances. Moreover, inflow and mixing of distinct water masses with different origins exerted significant influence on the composition of Synechococcus in the study area. Thus, physical processes as well as natural seasonal variation of environmental factors should be considered to better understand ecology of planktonic organisms around Dokdo.

초미소식물플랑크톤은 지름 $3{\mu}m$ 이하의 작은 크기에도 불구하고 열대 외양 뿐만 아니라 온대의 연안 해역에서도 일차생산자로서 중요한 기능을 한다. 초미소식물플랑크톤 중 Synechococcus와 Prochlorococcus는 현재까지 20여개 및 10여개 이상의 clade가 확인되어 유전적 다양성이 매우 높고, 주요 clade들의 생물지리학적 분포 및 생태적 특성도 잘 알려져 있다. 본 연구는 계절적 변동이 뚜렷하고, 난류와 한류의 영향으로 다양한 물리적 특성이 나타나는 독도 주변 해역에서 초미소남세균의 개체수 및 유전적 다양성을 조사함으로써, 독도 주변 해역에서 초미소남세균 다양성의 분포 특성과 환경과의 연관성을 이해하고자 하였다. Synechococcus 개체수는 겨울에 낮고 수온이 점차 증가함에 따라 지수적으로 증가한 후 $20^{\circ}C$ 이상에서 포화되는 양상을 보였다. 반면, Prochlorococcus는 대부분의 시기에 나타나지 않거나, 소수로 출현하는 것으로 파악되었다. 그러나, 여름에는 HLII 생태형에 속하는 Prochlorococcus가 약 7%정도까지 출현하였다. 봄과 초여름에 초미소남세균의 개체수는 주로 저온성인 Synechococcus clade I과 IV의 성장에 의해 증가되는 것으로 나타났으며, 이후 8월에는 난수와 빈영양 환경을 선호하는 clade II를 포함한 다양한 clade의 Synechococcus가 이들을 대체하며 높은 개체수를 유지하는 양상을 보였다. 그러나 하계에도 엽록소 최대층에서는 수온이 $9{\sim}17^{\circ}C$ 정도로 낮아 여전히 저온성 clade I과 IV가 우점하였다. 엽록소 최대층에서 Synechococcus 개체수 증가에 수온 이외에 수층의 안정도도 중요한 요인으로 나타났으며, Synechococcus의 다양성도 대체로 수온 분포에 의해 잘 설명될 수 있었으나, 물리적 특성이 다른 수괴의 유입과 혼합도 다양성의 분포를 결정하는 중요한 요인으로 파악되었다. 따라서, 독도 주변해의 부유성 생물의 생태를 이해하기 위해서는 계절적 환경 변동뿐만 아니라 다양한 물리적 과정도 고려되어져야 할 것으로 보인다.

Keywords

References

  1. Ahlgren, N.A. and G. Rocap, 2006. Culture isolation and cultureindependent clone libraries reveal new marine Synechococcus ecotypes with distinctive light and N physiologies. Appl Environ Microbiol 72: 7193−7204. https://doi.org/10.1128/AEM.00358-06
  2. Choi, D.H. 2012. Picocyanobacterial diversity and distribution during summer in the northern East China Sea. Ocean & Polar Res 34:19−28. https://doi.org/10.4217/OPR.2012.34.1.019
  3. Choi, D.H. and J.H. Noh, 2009. Phylogenetic diversity of Synechococcus strains isolated from the East China Sea and the East Sea. FEMS Microbiol Ecol 69: 439−448. https://doi.org/10.1111/j.1574-6941.2009.00729.x
  4. Choi, D.H. and J.H. Noh, 2006. Molecular phylogenetic analyses of three Synechococcus strains isolated from seawater near the Ieodo Ocean Research Station. Ocean Sci J 41: 315−318. https://doi.org/10.1007/BF03020633
  5. Choi, D.H., J.H. Noh and J. Shim, 2013. Seasonal changes in picocyanobacterial diversity as revealed by pyrosequencing in temperate waters of the East China Sea and the East Sea. Aquat Microb Ecol 71: 75−90. https://doi.org/10.3354/ame01669
  6. Choi, D.H., J.H. Noh, M.-S. Hahm, and C.M. Lee, 2011. Picocyanobacterial abundances and diversity in surface water of the northwestern Pacific Ocean. Ocean Sci J 46: 265−271. https://doi.org/10.1007/s12601-011-0020-0
  7. Choi, D.H., K.T. Park, S.M. An, K. Lee, J.C. Cho, J.H. Lee, D. Kim, D. Jeon and J.H. Noh, 2015. Pyrosequencing revealed SAR116 clade as dominant dddP-containing bacteria in oligotrophic NW Pacific Ocean. PLoS ONE 10:e0116271. https://doi.org/10.1371/journal.pone.0116271
  8. Fuller, N.J., D. Marie, F. Partensky, D. Vaulot, A.F. Post, D.J. Scanlan, 2003. Clade-specific 16S ribosomal DNA oligonucleotides reveal the predominance of a single marine Synechococcus clade throughout a stratified water column in the Red Sea. Appl Environ Microbiol 69: 2430−2443. https://doi.org/10.1128/AEM.69.5.2430-2443.2003
  9. Illumina, 2013. 16S metagenomic sequencing library preparation. http://support.illumina.com/downloads/16s_metagenomic_sequencing_library_preparation.html.
  10. KORDI, 2005. A study on marine ecosystem of Dokdo (final report). pp 121-156.
  11. Li WKW, 1994. Primary Production of Prochlorophytes, Cyanobacteria, and eukaryotic ultraphytoplankton-Measurements from Flow cytometric sorting. Limnol Oceanogr 39: 169−175. https://doi.org/10.4319/lo.1994.39.1.0169
  12. Liu, H.B., H.A. Nolla, and L. Campbell, 1997. Prochlorococcus growth rate and contribution to primary production in the equatorial and subtropical North Pacific Ocean. Aquat Microb Ecol 12: 39−47. https://doi.org/10.3354/ame012039
  13. Mitchell, D.A., D.R. Watts, M. Wimbush, W. J. Teague, K.L. Tracey, J.W. Book, K.I. Chang, M.S. Suk, and J.H. Yoon, 2005. Upper circulation patterns in the Ulleung Basin. Deep-Sea Res II 52:1617−1638.
  14. Noh, J.H., S.J. Yoo, J.A. Lee, H.C. Kim, and J.H. Lee, 2005. Phytoplankton in the waters of the Ieodo Ocean Research Station determined by microscopy, flow cytometry, HPLC pigment data and remote sensing. Ocean & Polar Res. 27: 397−417. https://doi.org/10.4217/OPR.2005.27.4.397
  15. Parsons, T.R., Y. Maita, and C.M. Lalli, 1984. A manual of chemical and biological methods for seawater analysis. Pergamon, Amsterdam.
  16. Partensky, F., W.R. Hess, and D. Vaulot, 1999. Prochlorococcus, a marine photosynthetic prokaryote of global significance. Microbiol Mol Biol Rev 63: 106−127.
  17. Schloss, P.D., S.L. Westcott, T. Ryabin, J.R. Hall, and M. Jartmann, 2009. Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 75: 7537−7541. https://doi.org/10.1128/AEM.01541-09
  18. Sohm, J.A., N.A. Ahlgren, Z.J. Thomson, C. Williams, J.W. Moffett, M.A. Saito, E.A. Webb, and G. Rocap, 2015. Co-occurring Synechococcus ecotypes occupy four major oceanic regimes defined by temperature, macronutrients and iron. ISME J doi:10.1038/ismej.2015.115.
  19. SPSS, 2009. PASW Statistics 18 Relaese 18.0.0.
  20. Teira, E., B. Mourino, E. Maranon, V. Perez, M.J. Pazo, P. Serret, de D. Armas, J. Escanez, E.M.S. Woodward, and E. Fernandez, 2005. Variability of chlorophyll and primary production in the Eastern North Atlantic Subtropical Gyre: potential factors affecting phytoplankton activity. Deep-Sea Res I 52: 569−588. https://doi.org/10.1016/j.dsr.2004.11.007
  21. Zwirglmaier, K., J.L. Heywood, K. Chamberlain, E.M.S. Woodward, M.V. Zubkov, and D.J. Scanlan, 2007. Basin-scale distribution patterns lineages in the Atlantic Ocean. Environ Microbiol 9: 1278−1290. https://doi.org/10.1111/j.1462-2920.2007.01246.x
  22. Zwirglmaier, K., L. Jardillier, M. Ostrowski, S. Mazard, L. Garczarek, D. Vaulot, F. Not, R. Massana, O. Ulloa, and D.J. Scanlan, 2008. Global phylogeography of marine Synechococcus and Prochlorococcus reveals a distinct partitioning of lineages among oceanic biomes. Environ Microbiol 10: 147−161.

Cited by

  1. 동해 울릉도-독도해역에서 질소, 인, 철 첨가실험에 따른 식물플랑크톤의 성장 및 군집반응 vol.17, pp.11, 2016, https://doi.org/10.5762/kais.2016.17.11.186