참고문헌
- Aizerman, A., Braverman, E. M. and Rozoner, L. I. (1964). Theoretical foundations of the potential function method in pattern recognition learning, Automation and Remote Control, 25, 821-837.
- Box, G. E. P. and Jenkins, G. M. (1970). Time series analysis, Forecasting and Control, Holden-Day, Oakland, CA.
- Claveria, O., Monte, E. and Torra, S. (2015). Regional Forecasting with Support Vector Regressions: The Case of Spain, University of Barcelona, Regional Quantitative Analysis Group.
- Fletcher, R. (1987). Practical Methods of Optimization, Wiley, New York, 1, 784-794.
- Karin, K. (2011). Forecasting electricity demand in Thailand with and artificial neural network approach, Journal of Energies, 4, 1246-1257. https://doi.org/10.3390/en4081246
- Taylor, J. W. (2003). Short-term electricity demand forecasting using double seasonal exponential smoothing, Journal of the Operational Research Society, 54, 799-805. https://doi.org/10.1057/palgrave.jors.2601589
- Taylor, J.W. (2010). Triple seasonal methods for short-term electricity demand forecasting, European Journal of Operational Research, 204, 139-152. https://doi.org/10.1016/j.ejor.2009.10.003
- Vapnik, V. (1995). The Nature of Statistical Learning Theory, Springer, New York.
-
Wang, J., Zhu, W., Zhang, W. and Sun, D. (2009). A trend fixed on firstly and seasonal adjustment model combined with the
${\epsilon}$ -SVR for short-term forecasting of electricity demand, Energy Policy, 37, 4901-4909. https://doi.org/10.1016/j.enpol.2009.06.046 - Winters, P. R. (1960). Forecasting sales by exponentially weighted moving averages, Management Science, 6, 324-342. https://doi.org/10.1287/mnsc.6.3.324
- Yoon, S. H., Lee, Y. S. and Park, J. S. (2009). Statistical modeling for forecasting maximum electricity demand in Korea, Communications for Statistical Applications and Method, 16, 127-135. https://doi.org/10.5351/CKSS.2009.16.1.127
피인용 문헌
- An empirical study of Chinese consumers' lifestyle by country of origin effect of mobile phone vol.27, pp.6, 2016, https://doi.org/10.7465/jkdi.2016.27.6.1565