Implementation of Crime Pattern Analysis Algorithm using Big Data

빅 데이터를 이용한 범죄패턴 분석 알고리즘의 구현

  • 차경현 (광운대학교 전자융합공학과 유비쿼터스 통신 연구실) ;
  • 김경호 (광운대학교 전자융합공학과 유비쿼터스 통신 연구실) ;
  • 황유민 (광운대학교 전자융합공학과 유비쿼터스 통신 연구실) ;
  • 이동창 ((주)위니텍) ;
  • 김상지 ((주)위니텍) ;
  • 김진영 (광운대학교 전자융합공학과 유비쿼터스 통신 연구실)
  • Received : 2014.10.21
  • Accepted : 2014.11.13
  • Published : 2014.12.31

Abstract

In this paper, we proposed and implemented a crime pattern analysis algorithm using big data. The proposed algorithm uses crime-related big data collected and published in the supreme prosecutors' office. The algorithm analyzed crime patterns in Seoul city from 2011 to 2013 using the spatial statistics analysis like the standard deviational ellipse and spatial density analysis. Using crime frequency, We calculated the crime probability and danger factors of crime areas, time, date, and places. Through a result we analyzed spatial statistics. As the result of the proposed algorithm, we could grasp differences in crime patterns of Seoul city, and we calculated degree of risk through analysis of crime pattern and danger factor.

본 논문에서는 빅 데이터를 이용하여 범죄 발생 패턴을 분석하는 알고리즘을 제안하고 구현했다. 제안된 알고리즘은 대검찰청에서 수집하여 공개한 범죄관련 빅 데이터를 사용하며, 표준편차 타원체 및 공간밀도 분석과 같은 공간통계분석을 통해 서울시의 2011-2013년 범죄발생 패턴을 분석했다. 범죄 발생 빈도수를 이용하여 범죄발생지역, 시간, 요일, 장소의 위험지수를 구했고, 범죄 패턴 분석 알고리즘을 통해 범죄 발생 확률을 구했다. 이를 통해 공간통계분석을 했다. 제안된 알고리즘의 구현 결과, 서울시의 각 구별로 범죄발생 패턴이 다르다는 것을 파악할 수 있었고, 다양한 범죄발생 패턴을 분석하고 범죄발생확률을 위험지수를 통해 수치화하여 위험도를 정량적으로 산출할 수 있었다.

Keywords

References

  1. W. B. Liu and L. Ma, "A recent application of the ETAS model and a proposed method for prediction of strong aftershocks," Journal of pure and applied geophysics, vol.163, no.11, pp. 2513-2528, Dec. 2006. https://doi.org/10.1007/s00024-006-0140-0
  2. W. Ma, J. Chen, and P. Chen, "Illegal activities hotspot analysis based on GIS methods," in proceedings of 2011 2nd IEEE International Conference on Emergency Management and Management Sciences (ICEMMS), pp. 270-273, Beijing, China, Aug. 2011.
  3. S. Rahim and T. Sun, "ICTs based crime control model: An application based study of Gilgit-Baltistan, Pakistan," in Proceedings of 2011 10th International Conference on Electronic Measurement & Instruments (ICEMI), pp. 1-6, Chengdu, China, Aug. 2011.
  4. A.C. Alegria, H. Sahli, and E. Zimanyi "Application of density analysis for landmine risk mapping," in Proceedings of 2011 IEEE International Conference on Spatial Data Mining and Geographical Knowledge Services (ICSDM), pp. 223-228, Fuzhou, China, June 2011.
  5. L. Fajian, J. Zhang, and H. Zhang, D. Chen "Spatial structure of excellent tourism resources in Suzhou, China: A GIS-based approach," in Proceedings of 2011 19th International Conference on Geoinformatics, pp. 1-4, Shanghai, China, June 2011.
  6. C. Peng, C. Tao, and Y. Hongyong, "GIS based crime risk analysis and management in cities," in Proceedings of 2010 2nd International Conference on Information Science and Engineering (ICISE), pp. 3721-3724, Hangzhou, China, Dec. 2010.
  7. N. Ishii, I. Toriin, and H. Tanaka, "Mapping of nearest neighbor for classification," in Proceedings of 2013 IEEE/ACIS 12th International Conference on Computer and Information Science (ICIS), pp. 121-126, Niigata, Japan, Dec. 2010.