DOI QR코드

DOI QR Code

Microwave Assisted Synthesis of 1,3,4-Oxadiazole/Thiohydantoin Hybrid Derivatives via Dehydrative Cycliztion of Semicarbazide

  • Yang, Seung-Ju (Innovative Drug Library Research Center, Department of Chemistry, College of Science, Dongguk University) ;
  • Lee, Jae-Min (Innovative Drug Library Research Center, Department of Chemistry, College of Science, Dongguk University) ;
  • Lee, Gee-Hyung (Innovative Drug Library Research Center, Department of Chemistry, College of Science, Dongguk University) ;
  • Kim, NaYeon (Innovative Drug Library Research Center, Department of Chemistry, College of Science, Dongguk University) ;
  • Kim, Yong-Sang (Innovative Drug Library Research Center, Department of Chemistry, College of Science, Dongguk University) ;
  • Gong, Young-Dae (Innovative Drug Library Research Center, Department of Chemistry, College of Science, Dongguk University)
  • Received : 2014.07.29
  • Accepted : 2014.09.16
  • Published : 2014.12.20

Abstract

A series of compounds containing both 1,3,4-oxadiazole and thiohydantoin were synthesized as a promising scaffold for application in medicinal chemistry. The key step of the synthesis is a microwave-assisted cyclization of semicarbazides possessing a thiohydantoin moiety at one of the acyl termini using $POCl_3$ as a dehydrating reagent. A wide range of semicarbazides were prepared through the substitution of hydrazides with an N-acylated thiohydantoin derived from the cyclization of the corresponding isothiocyanate with an amino acid and subsequent N-acylation of the resultant thiohydrantion. Consequently, the 58 number of 1,3,4-oxadiazole derivatives having a thiohydantoin substituent were prepared in good overall yields.

Keywords

References

  1. (a) Matin, A.; Gavande, N.; Kim, M. S.; Yang, N. X.; Salam, N. K.; Hanrahan, J. R.; Roubin, R. H.; Hibbs, D. E. J. Med. Chem. 2009, 52, 6835. https://doi.org/10.1021/jm900964r
  2. (b) Priego, E. M.; Kuenzel, J. V. F. D.; IJzerman, A. P.; Camarasa, M. J.; Perez-Perez, M. J. J. Med. Chem. 2002, 45, 3337. https://doi.org/10.1021/jm0208469
  3. (c) Galal, S. A.; El-All, A. S. A.; Abdallah, M. M.; El-Diwani, H. I. Bioorg. Med. Chem. Lett. 2009, 19, 2420. https://doi.org/10.1016/j.bmcl.2009.03.069
  4. (d) Lahm, G. P.; Stevenson, T. M.; Selby, T. P.; Freudenberger, D. C.; Flexner, L.; Bellin, C. A.; Dubas, C. M.; Smith, B. K.; Hughes, K. A.; Hollingshaus, J. G.; Clark, C. E.; Benner, E. A. Bioorg. Med. Chem. Lett. 2007, 17, 6274. https://doi.org/10.1016/j.bmcl.2007.09.012
  5. (a) Mullican, M. D.; Wilson, M. W.; Connor, D. T.; Kostlan, C. R.; Schrier, D. J.; Dyer, R. D. J. Med. Chem. 1993, 36, 1090. https://doi.org/10.1021/jm00060a017
  6. (b) Boschelli, D. H.; Connor, D. T.; Bornemeier, D. A.; Dyer, R. D.; Kennedy, J. A.; Kuipers, P. J.; Okonkwo, G. C.; Schrier, D. J.; Wright, C. D. J. Med. Chem. 1993, 36, 1802. https://doi.org/10.1021/jm00065a002
  7. (c) Gauthier, M. P.; Michaux, C.; Rolin, S.; Vastersaegher, C.; Leval, X. D.; Julemont, F.; Pochet, L.; Masereel, B. Bioorg. Med. Chem. 2006, 14, 918. https://doi.org/10.1016/j.bmc.2005.09.005
  8. (a) El-Emam, A. A.; Al-Deeb, O. A.; Al-Omar, M.; Lehmann, J. Bioorg. Med. Chem. 2004, 12, 5107. https://doi.org/10.1016/j.bmc.2004.07.033
  9. (b) Hollar, B. S.; Gonsalves, R.; Shenoy, S. Eur. J. Med. Chem. 2000, 35, 267. https://doi.org/10.1016/S0223-5234(00)00154-9
  10. McCoull, W.; Addie, M. S.; Birch, A. M.; Birtles, S.; Buckett, L. K.; Butlin, R. J.; Bowker, S. S.; Boyd, S.; Chapman, S.; Davies, R. D. M.; Donald, C. S.; Green, C. P.; Jenner, C.; Kemmitt, P. D.; Leach, A. G.; Moody, G. C.; Gutierrez, P. M.; Nicholas, J. N.; Nowak, T.; Packer, M. J.; Plowright, A. T.; Revill, J.; Schofield, P.; Sheldon, C.; Stokes, S.; Turnbull, A. V.; Wang, S. J. Y.; Whalley, D. P.; Wood. J. M. Bioorg. Med. Chem. Lett. 2012, 22, 3873. https://doi.org/10.1016/j.bmcl.2012.04.117
  11. (a) Warmus, J. S.; Flamme, C.; Zhang, L. Y.; Barrett, S.; Bridges, A.; Chen, H.; Gowan, R.; Kaufman, M.; Sebolt-Leopold, J.; Leopold, W.; Merriman, R.; Ohren, J.; Pavlovsky, A.; Przybranowski, S.; Tecle, H.; Valik, H.; Whitehead, C.; Zhang E. Bioorg. Med. Chem. Lett. 2008, 18, 6171. https://doi.org/10.1016/j.bmcl.2008.10.015
  12. (b) Khatik, G. L.; Kaur, J.; Kumar, V.; Tikoo, K.; Venugopalan, P.; Nair, V. A. Eur. J. Med. Chem. 2011, 46, 3291. https://doi.org/10.1016/j.ejmech.2011.04.050
  13. Gong, Y. D.; Yang, S. J.; Kim, S. H. 2-Amino-substituted oxadiazole derivatives and pharmaceutical composition comprising the same. KR 10-2013-013059, October 10, 2013.
  14. (a) Puthiyapurayil, P.; Poojary, B.; Chikkanna, C.; Buridipad, S. K. Eur. J. Med. Chem. 2012, 53, 203. https://doi.org/10.1016/j.ejmech.2012.03.056
  15. (b) Sangshetti, J. N.; Chabukswar, A. R.; Shinde, D. B. Bioorg. Med. Chem. Lett. 2011, 21, 444. https://doi.org/10.1016/j.bmcl.2010.10.120
  16. (c) Zhang, L. R.; Liu, Z. J.; Zhang, H.; Sun, J.; Luo, Y.; Zhao, T. T.; Gong, H. B. Bioorg. Med. Chem. 2012, 20, 3615. https://doi.org/10.1016/j.bmc.2012.03.061
  17. (a) Zhang, W.; Lu, Y. Org. Lett. 2003, 14, 2555.
  18. (b) Elokdah, H.; Sulkowski, T. S.; Abou-Gharbia, M.; Butera, J. A.; Chai, S. Y.; McFarlane, G. R.; McKean, M. L.; Babiak, J. L.; Adelman, S. J.; Quinet, E. M. J. Med. Chem. 2004, 47, 681. https://doi.org/10.1021/jm030219z
  19. (c) Muccioli, G. G.; Wouters, J.; Charlier, C.; Scriba, G. K. E.; Pizza, T.; Pace, P. D.; Martino, P. D.; Poppitz, W.; Poupaert, J. H.; Lambert, D. M. J. Med. Chem. 2006, 49, 872. https://doi.org/10.1021/jm050484f
  20. (d) Bouzroura, S.; Hammal, L.; Nedjar-Kolli, B.; Balegroune, F.; Hamadene, M.; Poulain, S. Synthetic Communications 2007, 38, 448.
  21. (a) Brain, C. T.; Paul, J. M.; Loong, Y.; Oakley, P. J. Tetrahedron Lett. 1999, 40, 3275. https://doi.org/10.1016/S0040-4039(99)00382-2
  22. (b) Rostamizadeh, S.; Housaini, S. A. G. Tetrahedron Lett. 2004, 45, 8753. https://doi.org/10.1016/j.tetlet.2004.09.095
  23. (c) Dolman, S. J.; Gosselin, F.; O'Shea, P. D.; Davies, I. E. J. Org. Chem. 2006, 71, 9548. https://doi.org/10.1021/jo0618730
  24. (d) Kilburn, J. P.; Lau, J.; Jones, R. C. F. Tetrahedron Lett. 2001, 42, 2583. https://doi.org/10.1016/S0040-4039(01)00222-2
  25. (e) Fulop, F.; Semega, E.; Dombi, G.; Bernath, G. J. Heterocycl. Chem. 1990, 27, 951-955. https://doi.org/10.1002/jhet.5570270424
  26. (f) Kucukguzel, G.; Kocatepe, A.; Clercq, E. D.; Sahin, F.; Gulluce, M. Eur. J. Med. Chem. 2006, 41, 353. https://doi.org/10.1016/j.ejmech.2005.11.005
  27. (g) Omar, A. M. E.; Aboulwafa, O. J. Heterocycl. Chem. 1984, 21, 1415. https://doi.org/10.1002/jhet.5570210538
  28. (a) Lahred, M.; Hallberg, A. Drug Discovery Today 2001, 6, 406. https://doi.org/10.1016/S1359-6446(01)01735-4
  29. (b) Lew, A.; Krutzik, P. O.; Hart, M. E.; Chamberlin, A. R. J. Comb. Chem. 2002, 4, 95. https://doi.org/10.1021/cc010048o
  30. (c) Kappe, C. O. Curr. Opin. Chem. Biol. 2002, 6, 314. https://doi.org/10.1016/S1367-5931(02)00306-X
  31. (d) Wathey, B.; Tierney, J.; Lidstrom, P.; Westman, J. Drug Discovery Today. 2002, 7, 373. https://doi.org/10.1016/S1359-6446(02)02178-5
  32. (e) Blackwell, H. E. Org. Biomol. Chem. 2003, 1, 1251. https://doi.org/10.1039/b301432k
  33. (a) Collins, J. M.; Leadbeater, N. E. Org. Biomol. Chem. 2007, 5, 1141. https://doi.org/10.1039/b617084f
  34. (b) Rizzolo, F.; Sabatino, G.; Chelli, M.; Rovero, P.; Papini, A. M. Int. J. Pept. Res. Ther. 2007, 13, 203. https://doi.org/10.1007/s10989-006-9066-8
  35. (c) Coantic, S.; Subra, G.; Martinez, J. Int. J. Pept. Res. Ther. 2008, 14, 143. https://doi.org/10.1007/s10989-008-9123-6
  36. (d) Bacsa, B.; Bosze, S.; Kappe, C. O. J. Org. Chem. 2010, 75, 2103. https://doi.org/10.1021/jo100136r
  37. (e) Hjorringgaard, C. U.; Pedersen, J. M.; Vosegaard, T.; Nielsen, N. C.; Skrydsturp, T. J. Org. Chem. 2009, 74, 1329. https://doi.org/10.1021/jo802058x
  38. (a) Bogdal, D.; Prociak, A. Microwave-Enhanced Polymer Chemistry and Technology, Blackwell Publishing: Oxford, 2007.
  39. (b) Hoogenboom, R.; Schubert, U. S. Macromol. Rapid Commun. 2007, 28, 368. https://doi.org/10.1002/marc.200600749
  40. (c) Bardts, M.; Gonsior, N.; Ritter, H. Macromol. Chem. Phys. 2008, 209, 25. https://doi.org/10.1002/macp.200700443
  41. (d) Holtze, C.; Antonietti, M.; Tauer, K. Macromolecule 2006, 39, 5720. https://doi.org/10.1021/ma060608d
  42. (a) Varma, R. S. Clean Products and Processes 1999, 132.
  43. (b) Varma, R. S. In Advances in Green Chemistry: Chemical Syntheses Using Microwave Irradiation; Astra Zeneca Research Foundation, Kavitha Printers, Bangalore, India, 2002.
  44. (c) Bose, A. K.; Manhas, M. S.; Ganguly, S. N.; Sharma, A. H.; Banik, B. K. Synthesis 2002, 1578.
  45. (d) Nuchter, M.; Ondruschka, B.; Bonrath, W.; Gum, A. Green Chem. 2004, 6, 128. https://doi.org/10.1039/b310502d
  46. (a) Das, S. K. Synlett. 2004, 915.
  47. (b) Corsaro, A.; Chiacchio, U.; Pistara, V.; Romeo, G. Curr. Org. Chem. 2004, 8, 511. https://doi.org/10.2174/1385272043485828
  48. (a) Khatik, G. L.; Kaur, J.; Kumar, V.; Tikoo, K.; Venugopalan, P.; Nair, V. A. Eur. J. Med. Chem. 2011, 46, 3291. https://doi.org/10.1016/j.ejmech.2011.04.050
  49. (b) Lin, M. J.; Sun, C. M. Tetrahedron Lett. 2003, 44, 8739. https://doi.org/10.1016/j.tetlet.2003.09.156
  50. Hwang, J. Y.; Choi, H. S.; Lee, D. H.; Gong, Y. D. J. Comb. Chem. 2005, 7, 816. https://doi.org/10.1021/cc0500957
  51. (a) Yang, S. J.; Lee, S. H.; Kwak, H. J.; Gong, Y. D. J. Org. Chem. 2013, 78, 438. https://doi.org/10.1021/jo302324r
  52. (b) Baxendale, I. R.; Ley, S. V.; Martinelli, M. Tetrahedron 2005, 5323.
  53. (a) Conole, D.; Beck, T. M.; Jay-Smith, M.; Tingle, M. D.; Eason, C. T.; Brimble, M. A.; Rennison, D. Bioorg. Med. Chem. 2014, 22, 2220. https://doi.org/10.1016/j.bmc.2014.02.013
  54. (b) Balsells, J.; DiMichele, L.; Liu, J.; Kubryk, M.; Hansen, K.; Armstrong, iii, J. D. Org. Lett. 2005, 7, 1039. https://doi.org/10.1021/ol0474406
  55. (c) Wang, C.; Palsson, L.; Batsanov, A. S.; Bryce, M. R. J. Am. Chem. Soc. 2006, 128, 3789. https://doi.org/10.1021/ja0577600
  56. Lipinski, C. A.; Lombardo, F.; Doming, B. W.; Feeney, P. J. Adv. Drug Delivery Rew. 1997, 23, 3. https://doi.org/10.1016/S0169-409X(96)00423-1

Cited by

  1. ]imidazoles via a Phase-Based, Chemoselective Reaction pp.2156-8944, 2017, https://doi.org/10.1021/acscombsci.7b00106