DOI QR코드

DOI QR Code

RGB Light Emissions from ZnSe Based Nanocrystals: ZnSe, ZnSe:Cu, and ZnSe:Mn

  • Song, Byungkwan (Department of Chemistry, Institute of Nanosensor and Biotechnology, Center for Photofunctional Energy Materials (GRRC), Dankook University) ;
  • Heo, Jeongho (Department of Chemistry, Institute of Nanosensor and Biotechnology, Center for Photofunctional Energy Materials (GRRC), Dankook University) ;
  • Hwang, Cheong-Soo (Department of Chemistry, Institute of Nanosensor and Biotechnology, Center for Photofunctional Energy Materials (GRRC), Dankook University)
  • Received : 2014.08.05
  • Accepted : 2014.08.26
  • Published : 2014.12.20

Abstract

RGB light emitting ZnSe based nanocrystals: ZnSe (blue), ZnSe:Cu (green) and ZnSe:Mn (red) were synthesized by capping the surface of the nanocrystals with oleic acid. The obtained nanocrystal powders were characterized by using XRD, HR-TEM, ICP-AES, FT-IR, and FT-Raman spectroscopies. The optical properties were also measured by UV/Vis and photoluminescence (PL) spectroscopies. The PL spectra showed broad emission peaks at 471 nm (ZnSe), 530 nm (ZnSe:Cu) and 665 nm (ZnSe:Mn), with relative PL efficiencies in the range of 0.7% to 5.1% compared to a reference organic dye standard. The measured average particle sizes from the HR-TEM images for those three nanocrystals were 4.5 nm on average, which were also supported well by the Debye-Scherrer calculations. The elemental compositions of the ZnSe based nanocrystals were determined by ICP-AES analyses. Finally, the drawn CIE diagram showed the color coordinates of (0.15, 0.16) for ZnSe, (0.22, 0.57) for ZnSe:Cu, and (0.62, 0.35) for ZnSe:Mn respectively, which were fairly well matched to that of the RGB color standards.

Keywords

References

  1. Choi, C. L.; Alivisatos, A. P. Annu. Rev. Phys. Chem. 2010, 61, 369. https://doi.org/10.1146/annurev.physchem.012809.103311
  2. Bera, D.; Qian, L.; Tseng, T.; Holloway, P. H. Materials 2010, 3, 2260. https://doi.org/10.3390/ma3042260
  3. Hines, D. A.; Kamat, P. V. ACS Appl. Mater. Interfaces 2014, 6, 3041. https://doi.org/10.1021/am405196u
  4. Kim, J. Y.; Voznyy, O.; Zhitomirsky, D.; Sargent, E. H. Adv. Mater. 2013, 25, 4986. https://doi.org/10.1002/adma.201301947
  5. Kairdolf, B. A.; Smith, A. M.; Stokes, T. H.; Wang, M. D.; Young, A. N.; Nie, S. Annu. Rev. Anal. Chem. 2013, 6, 143. https://doi.org/10.1146/annurev-anchem-060908-155136
  6. Chestnoy, N.; Hull, R.; Brus, L. E. J. Chem. Phys. 1986, 85, 2237. https://doi.org/10.1063/1.451119
  7. Kumbbojkar, N.; Mahamuni, S.; Leppert, V.; Risbud, S. H. Nanostruc. Mater. 1998, 10, 117. https://doi.org/10.1016/S0965-9773(98)00055-5
  8. Revaprasadu, N.; Malik, M. A.; O'Brien, P. J. Mater. Chem. 1998, 8, 1885. https://doi.org/10.1039/a802705f
  9. Song, K. K.; Lee, S. H. Curr. Appl. Phys. 2001, 1, 169. https://doi.org/10.1016/S1567-1739(01)00012-8
  10. Hwang, C. S.; Cho, I. Bull. Korean Chem. Soc. 2005, 26, 1776. https://doi.org/10.5012/bkcs.2005.26.11.1776
  11. Huang, J.; Li, G.; Wu, E.; Xu, Q.; Yang, Y. Adv. Mater. 2006, 18, 114. https://doi.org/10.1002/adma.200501105
  12. Tamura, T.; Setomote, T.; Taguchi, T. J. Lumin. 2000, 87, 1180.
  13. Bowers, M. J.; McBride, J. R.; Rosental, S. J. J. Am. Chem. Soc. 2005, 127, 15378. https://doi.org/10.1021/ja055470d
  14. Lee, S. M.; Hwang, C. S. Bull. Korean Chem. Soc. 2013, 34, 321. https://doi.org/10.5012/bkcs.2013.34.1.321
  15. Lee, J. W.; Hwang, C. S. Bull. Korean Chem. Soc. 2014, 35, 189. https://doi.org/10.5012/bkcs.2014.35.1.189
  16. Sato, Y.; Takahashi, N.; Sato, S. Jpn. J. Appl. Phys. 1996, 35, 838. https://doi.org/10.1143/JJAP.35.838
  17. Flamee, S.; Cirillo, M.; Abe, S.; Nolf, K. D.; Gomes, R.; Aubert, T.; Hens, Z. Chem. Mater. 2013, 25, 2476. https://doi.org/10.1021/cm400799e
  18. Rhys-Williams, A. T.; Winfield, S. A.; Miller, J. N. Analyst 1983, 108, 1067. https://doi.org/10.1039/an9830801067
  19. Melhuish, W. H. J. Phys. Chem. 1961, 65, 229. https://doi.org/10.1021/j100820a009
  20. Yi. G.; Sun, B.; Yang, F.; Chen, D. J. Mater. Chem. 2001, 11, 2928. https://doi.org/10.1039/b108394e
  21. International Union of Crystallography in International Tables for X-ray Crystallography, Part III; Dordrecht, Netherlands, 1985; p 318.
  22. Kushida, T.; Tanaka, Y.; Oka, Y. Solid State Commun. 1974, 14, 617. https://doi.org/10.1016/0038-1098(74)91024-2
  23. Hasse, M. A.; Qui, J.; DePuydt, J. M.; Cheng, H. Appl. Phys. Lett. 1991, 59, 1272. https://doi.org/10.1063/1.105472
  24. Lippens, P. E.; Lannoo, M. Phys. Rev. B 1989, 39, 10935. https://doi.org/10.1103/PhysRevB.39.10935
  25. Tata, M.; Banerjee, S.; John, V. T.; Waguespack, Y.; Mcpherson, G. Colloids Surf. A 1997, 127, 39. https://doi.org/10.1016/S0927-7757(96)03968-4
  26. Zhuang, J.; Zhang, X.; Wang, G.; Li, D.; Yang, W.; Li, T. J. Mater. Chem. 2003, 13, 1853. https://doi.org/10.1039/b303287f
  27. Hines, M. A.; Guyot-Sionnest, P. J. J. Phys. Chem. B 1998, 102, 3655. https://doi.org/10.1021/jp9810217
  28. Goswami, B.; Pal, S.; Sarkar, P. J. Phys. Chem. C 2008, 112, 11630. https://doi.org/10.1021/jp801781s
  29. Xue, G.; Chao, W.; Lu, N.; Xingguang, S. J. Lumin. 2011, 131, 1300. https://doi.org/10.1016/j.jlumin.2011.03.012
  30. Gul, S.; Cooper, J. K.; Corrado, C.; Volibrecht, B.; Bridges, F.; Guo, J.; Zhang, J. Z. J. Phys. Chem. C. 2011, 115, 20864. https://doi.org/10.1021/jp2047272
  31. Hoa, T. T. Q.; The, N. D.; Mcvitie, S.; Nam, N. H.; Vu, L. V.; Canh, T. D.; Long, N. N. Opt. Mater. 2011, 33, 308. https://doi.org/10.1016/j.optmat.2010.09.008
  32. Quan, Z.; Yang, D.; Li, C.; Kong, D.; Yang, P.; Cheng, Z.; Lin, J. Langmuir 2009, 25, 10259. https://doi.org/10.1021/la901056d
  33. Chen, W.; Sammynaiken, R.; Huang, Y.; Malm, J. O.; Wellenberg, R.; Bovin, J. O.; Zwiller, V.; Kotov, N. J. Appl. Phys. 2001, 69, 1120.
  34. Pradhan, N.; Goorskey, D.; Thessing, J.; Peng, X. J. Am. Chem. Soc. 2005, 127, 17586. https://doi.org/10.1021/ja055557z
  35. Borse, P. H.; Deshmukh, N.; Shinde, R. F.; Date, S. K.; Kulkarin, S. K. J. Mater. Sci. 1999, 34, 6087. https://doi.org/10.1023/A:1004709601889
  36. Pradhan, N.; Peng, X. J. Am. Chem. Soc. 2007, 129, 3339. https://doi.org/10.1021/ja068360v
  37. Chen, D.; Viswanatha, R.; Ong, G. L.; Xie, R.; Balasurbramaninan, M.; Peng, X. J. Am. Chem. Soc. 2009, 131, 9333. https://doi.org/10.1021/ja9018644
  38. Smith, T.; Guild, J. Trans. Optical Soc. 1931, 33, 73. https://doi.org/10.1088/1475-4878/33/3/301
  39. Brisdon, A. K. Inorganic Spectroscopic Methods; Oxford Univ. Press: 1998, chap. 2.
  40. Fan, Y.; Zhou, Z.; Li, S.; Guan, F. Y.; Xu, D. P. Chin. Phys. Lett. 2011, 28, 110702. https://doi.org/10.1088/0256-307X/28/11/110702
  41. Zhang, L.; He, R.; Gu, H. C. Appl. Surface Sci. 2006, 253, 2611. https://doi.org/10.1016/j.apsusc.2006.05.023
  42. Tao, Y. T. J. Am. Chem. Soc. 1993, 17, 2688.
  43. Nakamoto, K. Infrared and Raman Spectra of Inorganic and Coordination Compounds; John Wiley & Son: New York, 1997.
  44. Schneider, J.; Kirby, R. D. Phys. Rev. B 1972, 6, 1290. https://doi.org/10.1103/PhysRevB.6.1290

Cited by

  1. Rapid, controllable, one-pot and room-temperature aqueous synthesis of ZnO:Cu nanoparticles by pulsed UV laser and its application for photocatalytic degradation of methyl orange pp.15227235, 2018, https://doi.org/10.1002/bio.3436
  2. Studies of impurity occupation and local angular distortions for Cu2+in CdS films at different concentrations vol.91, pp.2, 2014, https://doi.org/10.1088/0031-8949/91/2/025801
  3. One-pot room temperature synthesizing Cu- and Mn-doped ZnSe nanocrystals by a rapid photochemical method vol.30, pp.11, 2014, https://doi.org/10.1142/s0217984916502274
  4. 수열합성법에 의한 Zinc Selenide 나노 분말 합성 및 미세구조 특성 연구 vol.27, pp.9, 2014, https://doi.org/10.3740/mrsk.2017.27.9.459