DOI QR코드

DOI QR Code

Electrochemical Behavior of Pt-Ru Catalysts on Zeolite-templated Carbon Supports for Direct Methanol Fuel Cells

  • Lim, Tae-Jin (Department of Chemistry, Inha University) ;
  • Lee, Seul-Yi (Department of Chemistry, Inha University) ;
  • Yoo, Yoon-Jong (Reaction and Separation Materials Research Center, Korea Institutes of Energy Research) ;
  • Park, Soo-Jin (Department of Chemistry, Inha University)
  • Received : 2014.04.15
  • Accepted : 2014.08.25
  • Published : 2014.12.20

Abstract

Zeolite-templated carbons (ZTCs), which have high specific surface area, were prepared by a conventional templating method using microporous zeolite-Y for catalyst supports in direct methanol fuel cells. The ZTCs were synthesized at different temperatures to investigate the characteristics of the surface produced and their electrochemical properties. Thereafter, Pt-Ru was deposited at different carbonization temperatures by a chemical reduction method. The crystalline and structural features were investigated using X-ray diffraction and scanning electron microscopy. The textural properties of the ZTCs were investigated by analyzing $N_2$/77 K adsorption isotherms using the Brunauer-Emmett-Teller equation, while the micro- and meso-pore size distributions were analyzed using the Barrett-Joyner-Halenda and Harvarth-Kawazoe methods, respectively. The surface morphology was characterized using transmission electron microscopy and inductively coupled plasma-mass spectrometry. The electrochemical properties of the Pt-Ru/ZTCs catalysts were also analyzed by cyclic voltammetry measurements. From the results, the ZTCs carbonized at $900^{\circ}C$ show the highest specific surface areas. In addition, ZTC900-PR led to uniform dispersion of Pt-Ru on the ZTCs, which enhanced the electro-catalytic activity of the Pt-Ru catalysts. The particle size of ZTC900-PR catalyst is about 3.4 nm, also peak current density from the CV plot is $12.5mA/cm^2$. Therefore, electro-catalytic activity of the ZTC900-PR catalyst is higher than those of ZTC1000-PR catalyst.

Keywords

References

  1. Cropper, M. A. J.; Geiger, S.; Jollie, D. M. J. Power Sources 2004, 131, 57. https://doi.org/10.1016/j.jpowsour.2003.11.080
  2. Ilic, D.; Holl, K.; Brike, P.; Wohrle, T.; Brike-Salam, F. J. Power Sources 2006, 155, 1. https://doi.org/10.1016/j.jpowsour.2005.07.037
  3. Kim, S.; Park, S. J. Electrochim. Acta 2007, 52, 3013. https://doi.org/10.1016/j.electacta.2006.09.060
  4. Kawaguchi, T.; Sugiimoto, W.; Murakami, Y.; Takasu, Y. J. Catal. 2005, 229, 176. https://doi.org/10.1016/j.jcat.2004.10.020
  5. Kim, B. J.; Park, S. J. Polym-Korea 2011, 22, 2.
  6. Jung, S. M.; Shin, J. K.; Kim, K. S.; Baek, S. H.; Tak, Y. S. Appl. Chem. Eng. 2010, 21, 537.
  7. Nitani, H.; Nakagawa, T.; Daimon, H.; Kurobe, Y.; Ono, T.; Honda, Y.; Koizumi, A.; Seino, S.; Yamamoto, T. A. Appl. Catal., A 2007, 326, 2.
  8. Li, X.; Chen, W. X.; Zhao, J.; Xing, W.; Xu, Z. Carbon 2005, 43, 2168. https://doi.org/10.1016/j.carbon.2005.03.030
  9. Nam, K. D.; Kim, T. J.; Kim, S. K.; Lee, B. R.; Peck, D. H.; Ryu, S. K.; Jung, D. H. Korean J. Chem. Eng. 2006, 17, 223.
  10. Xu, J. B.; Zhao, T. S.; Liang, Z. X. J. Power Sources 2008, 185, 857. https://doi.org/10.1016/j.jpowsour.2008.09.039
  11. Choi, S. M.; Seo, M. H.; Kim, H. J.; Lim, E. J.; Kim, W. B. Int. J. Hydrogen Energ. 2010, 35, 6853. https://doi.org/10.1016/j.ijhydene.2010.04.020
  12. Park, S. J.; Park, B. J.; Ryu, S. K. Carbon 1999, 37, 1223. https://doi.org/10.1016/S0008-6223(98)00318-2
  13. Youn, H. K.; Kim, J.; Chandrasekar, G.; Jin, H.; Ahn, W. S. Mater. Lett. 2011, 65, 1772. https://doi.org/10.1016/j.matlet.2011.03.039
  14. Konwar, R. J.; De, M. Microporous Mesoporous Mater. 2013, 175, 16. https://doi.org/10.1016/j.micromeso.2013.03.014
  15. Su, F. N.; Zeng, H. J.; Yu, Y.; Lv, J.; L.; Lee, J. Y.; Zhao, X. S. Carbon 2005, 43, 2368.
  16. Coker, E. N.; Steen, W. A.; Miller, J. T.; Kropf, A. J.; Miller, J. E. J. Mater Chem. 2007, 17, 3330. https://doi.org/10.1039/b703916f
  17. Coker, E. N.; Steen, W. A.; Miller, J. E. Microporous Mesoporous Mater. 2007, 104, 236. https://doi.org/10.1016/j.micromeso.2007.02.044
  18. Zhao, D.; Feng, J.; Huo, Q.; Melosh, N.; Fredirckson, G. H.; Chemlka, B. F.; Stucky, G. D. Science 1998, 279, 548. https://doi.org/10.1126/science.279.5350.548
  19. Sakamoto, Y.; Kaneda, M.; Terasaki, O.; Zhao, D. Y.; Kim, J. M.; Stucky, G.; Shin, H. J.; Ryoo, R. Nature 2000, 408, 449. https://doi.org/10.1038/35044040
  20. Nishihara, H.; Hou, P. X.; Li, L. X.; Ito, M.; Uchiyama, M.; Kaburagi, T.; Ikura, A.; Katamura, J.; Kawarada, T.; Mizuuchi, K.; Kyotani, T. J. Phys. Chem. 2009, 113, 3189.
  21. Kim, S.; Lee, J. R.; Park, S. J. Korean Chem. Eng. Res. 2008, 46, 118.
  22. Kim, S.; Park, S. J. J. Solid State Electrochem. 2007, 11, 821. https://doi.org/10.1007/s10008-006-0228-6
  23. Kim, D. S.; Guiver, M. D.; Yun, T. I.; S, M. Y.; Rhim, J. W. J. Solid State Electrochem. 2006, 281, 156.
  24. Tokarz, W.; Lota, G.; Fackowiak, E.; Czerwinski, A.; Piela, P. Electrochim Acta 2013, 98, 95.
  25. Lee, S. Y.; Kim, B. J.; Park, S. J. Energy 2014, 66, 72.
  26. Park, S. J.; Seo, M. K.; Lee, Y. S. Carbon 2003, 41, 723. https://doi.org/10.1016/S0008-6223(02)00384-6
  27. Kim, Y. H.; Park, S. J. Appl. Chem. Eng. 2010, 21, 183.
  28. Im, J. S.; Park, S. J.; Lee, Y. S. J. Colloid Interface Sci. 2007, 314, 32. https://doi.org/10.1016/j.jcis.2007.05.033
  29. Han, D. M.; Guo, Z. P.; Zhao, Z. W.; Zeng, R.; Meng, Y. Z.; Shu, D.; Liu, H. K. J. Power Sources 2008, 184, 361. https://doi.org/10.1016/j.jpowsour.2008.03.051
  30. Jeyabharathi, C.; Mathiyarasu, J.; Phani, K. L. N. J. Appl. Electrochem. 2009, 39, 45. https://doi.org/10.1007/s10800-008-9638-8
  31. Prabhuram, J.; Zhao, T. S.; Wong, C. W.; Guo, J. W. J. Power Sources 2004, 134, 1. https://doi.org/10.1016/j.jpowsour.2004.02.021
  32. Seredych, M.; Hulicova-Jurcakova, D.; Lu, G. Q.; Bandosz, T. J. Carbon 2008, 46, 1475. https://doi.org/10.1016/j.carbon.2008.06.027
  33. Kunz, H. R.; Gruver, G. A. J. Electrochem. Soc. 1975, 122, 1279. https://doi.org/10.1149/1.2134000
  34. Tang, S.; Vongehr, S.; He, G.; Chen, L.; Meng, X. J. Colloid Interface Sci. 2012, 125, 375.
  35. Kim, S. K.; Park, J. Y.; Hwang, S. C.; Lee, D. K.; Lee, S. H.; Rhee, Y. W.; Han, M. H. J. Clean Technology 2013, 19, 320. https://doi.org/10.7464/ksct.2013.19.3.320
  36. Woo, J. Y.; Lee, K. M.; Jee, B. C.; Ryu, C. H.; Yoon, C. H.; Chung, J. H.; Kim, Y. R.; Moon, S. B.; Kang, A. S. J. Ind. Eng. Chem. 2010, 16, 688. https://doi.org/10.1016/j.jiec.2010.07.017
  37. Lo, A. Y.; Hung, C. T.; Yu, N.; Kuo, C. T.; Liu, S. B. Appl Energ 2012, 100, 66. https://doi.org/10.1016/j.apenergy.2012.05.043
  38. Lee, S. Y.; Kim, B. J.; Park, S. J. J. Solid State Chem. 2013, 199, 258. https://doi.org/10.1016/j.jssc.2012.12.028
  39. Prado-Burguete, C.; Linares-Solano, A.; Rodriguez-Reinoso, F.; Salinas-Martinez, C. J. Catal. 1989, 115, 98. https://doi.org/10.1016/0021-9517(89)90010-9
  40. Zainoodin, A. M.; Kamarudin, S. K.; Daud, W. R. W. Int. J. Hydrogen Eng. 2010, 35, 4604.
  41. Hsieh, C. T.; Lin, J. Y. J. Power Sources 2009, 188, 347. https://doi.org/10.1016/j.jpowsour.2008.12.031
  42. Wang, Z. B.; Yin, G. P.; Zhang, J.; Sun, Y. C.; Shi, P. F. Electrochemica Acta 2006, 51, 5695.
  43. Kim, S.; Park, S. J. J. Power Sources 2006, 159, 42. https://doi.org/10.1016/j.jpowsour.2006.04.041

Cited by

  1. Zeolite-templated carbons – three-dimensional microporous graphene frameworks vol.54, pp.45, 2018, https://doi.org/10.1039/C8CC01932K