Abstract
Proteasome, a multicatalytic protease complex, has been validated as a promising therapeutic target in oncology. Carfilzomib (Kyprolis$^{(R)}$), a tetrapeptide epoxyketone, irreversibly inhibits the chymotrypsin-like (CT-L) activity of the proteasome and has been recently approved for multiple myeloma treatment by FDA. A chemistry effort was initiated to discover the compounds that are reversibly inhibit the proteasome by replacing the epoxyketone moiety of carfilzomib with a variety of ketones as reversible and covalent warheads at the C-terminus. The newly synthesized compounds exhibited significant inhibitory activity against CT-L activity of the human 20S proteasome. When the compounds were tested for cancer cell viability, 14-8 was found to be most potent in inhibiting Molt-4 acute lymphoblastic leukemia cell line with a $GI_{50}$ of $4.4{\mu}M$. Cytotoxic effects of 14-8 were further evaluated by cell cycle analysis and Western blotting, demonstrating activation of apoptotic pathways.