DOI QR코드

DOI QR Code

Synthesis and Electrochemical Performance of Reduced Graphene Oxide/AlPO4-coated LiMn1.5Ni0.5O4 for Lithium-ion Batteries

  • Hur, Jaehyun (Department of Chemical and Biological Engineering, Gachon University) ;
  • Kim, Il Tae (Department of Chemical and Biological Engineering, Gachon University)
  • Received : 2014.06.12
  • Accepted : 2014.08.18
  • Published : 2014.12.20

Abstract

The reduced graphene oxide(rGO)/aluminum phosphate($AlPO_4$)-coated $LiMn_{1.5}Ni_{0.5}O_4$ (LMNO) cathode material has been developed by hydroxide precursor method for LMNO and by a facile solution based process for the coating with GO/$AlPO_4$ on the surface of LMNO, followed by annealing process. The amount of $AlPO_4$ has been varied from 0.5 wt % to 1.0 wt %, while the amount of rGO is maintained at 1.0 wt %. The samples have been characterized by X-ray diffraction, scanning electron microscopy, and high-resolution transmission electron microscopy. The rGO/$AlPO_4$-coated LMNO electrodes exhibit better cyclic performance compared to that of pristine LMNO electrode. Specifically, rGO(1%)/$AlPO_4$(0.5%)- and rGO(1%)/$AlPO_4$(1%)-coated electrodes deliver a discharge capacity of, respectively, $123mAhg^{-1}$ and $122mAhg^{-1}$ at C/6 rate, with a capacity retention of, respectively, 96% and 98% at 100 cycles. Furthermore, the surface-modified LMNO electrodes demonstrate higher-rate capability. The rGO(1%)/$AlPO_4$(0.5%)-coated LMNO electrode shows the highest rate performance demonstrating a capacity retention of 91% at 10 C rate. The enhanced electrochemical performance can be attributed to (1) the suppression of the direct contact of electrode surface with the electrolyte, resulting in side reactions with the electrolyte due to the high cut-off voltage, and (2) smaller surface resistance and charge transfer resistance, which is confirmed by total polarization resistance and electrochemical impedance spectroscopy.

Keywords

References

  1. Kim, T. H.; Park, J. S.; Chang, S. K.; Choi, S.; Ryu, J. H.; Song, H. K. Adv. Energy Mater. 2012, 2, 860. https://doi.org/10.1002/aenm.201200028
  2. Kim, J. S.; Vaughey, J. T.; Johnson, C. S.; Thackeray, M. M. J. Electrochem. Soc. 2003, 150, A1498. https://doi.org/10.1149/1.1614798
  3. Strobel, P.; Palos, A. I.; Anne, M.; Cras, F. L. J. Mater. Chem. 2000, 10, 429. https://doi.org/10.1039/a905962h
  4. Zhong, Q. M.; Bonakdarpour, A.; Zhang, M. J.; Gao, Y.; Dahn, J. R. J. Electrochem. Soc. 1997, 144, 205. https://doi.org/10.1149/1.1837386
  5. Amine, K.; Tukamoto, H.; Yasuda, H.; Fujita, Y. J. J. Power Sources 1997, 68, 604. https://doi.org/10.1016/S0378-7753(96)02590-6
  6. Kraytsberg, A.; Ein-Eli, Y. Adv. Energy Mater. 2012, 2, 922. https://doi.org/10.1002/aenm.201200068
  7. Mukerjee, S.; Yang, X. Q.; Sun, X.; Lee, S. J.; McBreen, J.; Ein-Eli, Y. Electrochim. Acta 2004, 49, 3373. https://doi.org/10.1016/j.electacta.2004.03.006
  8. Noguchi, T.; Yamazaki, I.; Numata, T.; Shirakata, M. J. Power Sources 2007, 174, 359. https://doi.org/10.1016/j.jpowsour.2007.06.139
  9. Sun, Y. K.; Hong, K. J.; Prakash, J.; Amine, K. Electrochem. Commun. 2002, 4, 344. https://doi.org/10.1016/S1388-2481(02)00277-1
  10. Fey, G. T. K.; Lu, C. Z.; Kumar, T. P. J. Power Sources 2003, 115, 332. https://doi.org/10.1016/S0378-7753(03)00010-7
  11. Park, S. H.; Oh, S. W.; Myung, S. T.; Sun, Y. K. Electrochem. Solid-State Lett. 2004, 7, A451. https://doi.org/10.1149/1.1808114
  12. Alcantara, R.; Jaraba, M.; Lavela, P.; Tirado, J. L.; Zhecheva, E.; Stoyanova, R. Chem. Mater. 2004, 16, 1573. https://doi.org/10.1021/cm035369c
  13. Prabakar, S. J. R.; Han, S. C.; Singh, S. P.; Lee, D. K.; Sohn, K. S.; Pyo, M. J. Power Sources 2012, 209, 57. https://doi.org/10.1016/j.jpowsour.2012.02.053
  14. Lee, D. K.; Han, S. C.; Ahn, D.; Singh, S. P.; Sohn, K. S.; Pyo, M. Acs Applied Materials & Interfaces 2012, 4, 6841.
  15. Rao, C. V.; Reddy, A. L. M.; Ishikawa, Y.; Ajayan, P. M. Acs Appl. Mater. Interfaces 2011, 3, 2966. https://doi.org/10.1021/am200421h
  16. Ban, C.; Li, Z.; Wu, Z.; Kirkham, M. J.; Chen, L.; Jung, Y. S.; Payzant, E. A.; Yan, Y.; Whittingham, M. S.; Dillon, A. C. Adv. Energy Mater. 2011, 1, 58. https://doi.org/10.1002/aenm.201000001
  17. Prabakar, S. J. R.; Hwang, Y. H.; Lee, B.; Sohn, K. S.; Pyo, M. J. Electrochem. Soc. 2013, 160, A832. https://doi.org/10.1149/2.085306jes
  18. Stoller, M. D.; Park, S.; Zhu, Y.; An, J.; Ruoff, R. S. Nano Lett. 2008, 8, 3498. https://doi.org/10.1021/nl802558y
  19. Geim, A. K.; Novoselov, K. S. Nat. Mater. 2007, 6, 183. https://doi.org/10.1038/nmat1849
  20. Cho, J.; Kim, Y. W.; Kim, B.; Lee, J. G.; Park, B. Angewandte Chemie-International Edition 2003, 42, 1618. https://doi.org/10.1002/anie.200250452
  21. Hummers, W. S.; Offeman, R. E. J. Am. Chem. Soc. 1958, 80, 1339. https://doi.org/10.1021/ja01539a017
  22. Jung, K. H.; Kim, S. B.; Park, Y. J. Journal of the Korean Electrochemical Society 2011, 14, 77. https://doi.org/10.5229/JKES.2011.14.2.077
  23. Wang, G.; Shen, X.; Yao, J.; Park, J. Carbon 2009, 47, 2049. https://doi.org/10.1016/j.carbon.2009.03.053
  24. Talyosef, Y.; Markovsky, B.; Salitra, G.; Aurbach, D.; Kim, H. J.; Choi, S. J. Power Sources 2005, 146, 664. https://doi.org/10.1016/j.jpowsour.2005.03.064
  25. Yi, T.-F.; Xie, Y.; Zhu, Y.-R.; Zhu, R.-S.; Ye, M.-F. J. Power Sources 2012, 211, 59. https://doi.org/10.1016/j.jpowsour.2012.03.095
  26. Delacourt, C.; Laffont, L.; Bouchet, R.; Wurm, C.; Leriche, J. B.; Morcrette, M.; Tarascon, J. M.; Masquelier, C. J. Electrochem. Soc. 2005, 152, A913. https://doi.org/10.1149/1.1884787

Cited by

  1. Origin of Enhanced Cyclability in Covalently Modified LiMn1.5Ni0.5O4 Cathodes vol.11, pp.43, 2014, https://doi.org/10.1021/acsami.9b12912