DOI QR코드

DOI QR Code

Molecular Dynamics Simulation Study of Transport Properties of Diatomic Gases

  • Lee, Song Hi (Department of Chemistry, Kyungsung University) ;
  • Kim, Jahun (Department of Chemistry, Kyungsung University)
  • Received : 2014.05.16
  • Accepted : 2014.08.17
  • Published : 2014.12.20

Abstract

In this paper, we report thermodynamic and transport properties (diffusion coefficient, viscosity, and thermal conductivity) of diatomic gases ($H_2$, $N_2$, $O_2$, and $Cl_2$) at 273.15 K and 1.00 atm by performing molecular dynamics simulations using Lennard-Jones intermolecular potential and modified Green-Kubo formulas. The results of self-diffusion coefficients of diatomic gases obtained from velocity auto-correlation functions by Green-Kubo relation are in good agreement with those obtained from mean square displacements by Einstein relation. While the results for viscosities of diatomic gases obtained from stress auto-correlation functions underestimate the experimental results, those for thermal conductivities obtained from heat flux auto-correlation functions overestimate the experimental data except $H_2$.

Keywords

References

  1. Allen, M. P.; Tildesley, D. J. Computer Simulation of Liquids; Oxford Univ. Press: Oxford, 1987; p 2.
  2. Xiong, D. X.; Xu, Y. S.; Guo, Z.Y. J. of Thermal Science 1996, 5, 196. https://doi.org/10.1007/BF02653185
  3. Nwobi, O. C.; Long, L. N.; Micci, M. M. J. of Thermodynamics and Heat Transfer 1999, 13, 351. https://doi.org/10.2514/2.6445
  4. Evans, D. J.; Morriss, G. P. Comput. Phys. Rep. 1984, 1, 297. https://doi.org/10.1016/0167-7977(84)90001-7
  5. Lee, S. H. Bull. Korean Chem. Soc. 2004, 25, 737. https://doi.org/10.5012/bkcs.2004.25.5.737
  6. Lee, S. H. Bull. Korean Chem. Soc. 2007, 28, 1697. https://doi.org/10.5012/bkcs.2007.28.10.1697
  7. Lee, S. H. Bull. Korean Chem. Soc. 2007, 28, 1371. https://doi.org/10.5012/bkcs.2007.28.8.1371
  8. Singer, K.; Taylor, A.; Singer, J. V. L. Mol. Phys. 1977, 33, 1757. https://doi.org/10.1080/00268977700101451
  9. Gas Encyclopedia, "http://encyclopedia.airliquide.com/encyclopedia.asp"
  10. Nose, S. J. Chem. Phys. 1984, 81, 511. https://doi.org/10.1063/1.447334
  11. Hoover, W. G. Phys. Rev. A 1985, 31, 1695. https://doi.org/10.1103/PhysRevA.31.1695
  12. Allen, M. P.; Tildesley, D. J. Computer Simulation of Liquids; Oxford Univ. Press: Oxford, 1987; p 64.
  13. Swope, W. C.; Andersen, H. C.; Beren, P. H.; Wilson, K. R. J. Chem. Phys. 1982, 76, 637. https://doi.org/10.1063/1.442716
  14. Evans, D. J. Mol. Phys. 1977, 34, 317. https://doi.org/10.1080/00268977700101751
  15. Evans, D. J.; Murad, S. Mol. Phys. 1977, 34, 327. https://doi.org/10.1080/00268977700101761
  16. Kim, J. H.; Lee, S. H. in preparation.
  17. Lee, S. H. Bull. Korean Chem. Soc. 2013, 34, 2931. https://doi.org/10.5012/bkcs.2013.34.10.2931
  18. Allen, M. P.; Tildesley, D. J. Computer Simulation of Liquids; Oxford Univ. Press: Oxford, 1987; p 21.
  19. DeKock, R. L.; Gray, H. B. Chemical Structure and Bonding; University Science Books: 1989; p 199.
  20. Moore, E. A. Molecular Modelling and Bonding; Royal Society of Chemistry: 2002; p 64.
  21. http://en.wikipedia.org/wiki/Oxygen
  22. Verma, N. K.; Khanna, S. K.; Kapila, B. Comprehensive Chemistry XI; Laxmi Publications: p 466, ISBN 8170085969.
  23. McQuarrie, D. A. Statistical Mechanics, 2nd ed.; Happer & Row: NY, 1976; p 365.
  24. Atkins, P. W.; de Paula, J. Physical Chemistry. Vol. 1 Thermodynamics and Kinetics, 8th ed.; Oxford Univ Press: Oxford, 2006; p 453.

Cited by

  1. Using Molecular Simulation to Compute Transport Coefficients of Molecular Gases vol.124, pp.35, 2020, https://doi.org/10.1021/acs.jpcb.0c04462