DOI QR코드

DOI QR Code

Optical Properties of TeOx(2x One-dimensional Photonic Crystals

TeOx(22 1차원 광자결정의 광학 특성평가

  • Kong, Heon (Department of Advanced Chemicals and Engineering, Chonnam National University) ;
  • Yeo, Jong-Bin (School of Applied Chemical Engineering, Chonnam National University) ;
  • Lee, Hyun-Yong (School of Applied Chemical Engineering, Chonnam National University)
  • 공헌 (전남대학교 신화학소재공학과) ;
  • 여종빈 (전남대학교 응용화학공학부) ;
  • 이현용 (전남대학교 응용화학공학부)
  • Received : 2014.11.10
  • Accepted : 2014.11.24
  • Published : 2014.12.01

Abstract

One-dimensional (1D) photonic crystals (PCs) were prepared by $TeO_x(2<x<3)/SiO_2$ with the difference refractive index, and fabricated by sputtering technique from a $TeO_2$ and $SiO_2$ target. The $TeO_x$(2$Ar:O_2=40:10$). A 10-pair $TeO_x(2<x<3)/SiO_2$ 1D PCs were fabricated with the structure parameters of filling factor=0.5185, and period=410 nm. The properties of 1D PCs with and without a defect layer were evaluated by UV-VIS-NIR. A normal mode 1D PC have a photonic band gap (PBG) in the near infrared (NIR) region from 1,203 to 1,421 nm. In the case of 1D PC containing a defect layer, a defect level appears at 1,291 nm. The measured transmittance (T) spectra are nearly corresponding to calculated results. After He-Cd laser exposure, the defect level is shifted from 1,291 nm to 1,304 nm.

Keywords

References

  1. E. Yablomovitch, Phys. Rev. Lett., 58, 2059 (1987). https://doi.org/10.1103/PhysRevLett.58.2059
  2. S. John, Phys. Rev. Lett., 58, 2486 (1987). https://doi.org/10.1103/PhysRevLett.58.2486
  3. E. Yablonovitch, J. Opt. Soc. Am. B, 10, 283 (1993).
  4. E. Yablonovitch, J. Mod. Opt., 41, 173 (1994). https://doi.org/10.1080/09500349414550261
  5. J. D. Joannopoulos, P. Villeneuve, and S. Fan, Nature, 386, 143 (1997). https://doi.org/10.1038/386143a0
  6. H. Jiang, H. Chen, H. Li, Y. Zhang, and S. Zhu, Appl. Phys. Lett., 83, 5386 (2003). https://doi.org/10.1063/1.1637452
  7. A. H. Aly and H. A. Elsayed, Physica B, 407, 120 (2012). https://doi.org/10.1016/j.physb.2011.09.137
  8. Z. M. Jiang, B. Shi, D. T. Zhao, J. Liu, and X. Wang, Appl. Phys. Lett., 79, 3395 (2001). https://doi.org/10.1063/1.1421093
  9. H. Y. Lee, H. Makino, T. Yao, and A. Tanaka, Appl. Phys. Lett., 81, 4502 (2002). https://doi.org/10.1063/1.1524291
  10. M. W. Feise, I. V. Shadrivov, and T. S. Kivshar, Phys. Rev. E, 71, 037602 (2005). https://doi.org/10.1103/PhysRevE.71.037602
  11. H. Y. Lee and T. Yao, J. Appl. Phys., 93, 819 (2003). https://doi.org/10.1063/1.1530726
  12. N. Dewan, V. Gupta, K. Sreenivas, and R. S. Katiuar, J. Appl. Phys., 101, 084910 (2007). https://doi.org/10.1063/1.2717139
  13. M. Takenaga, N. Yamada, K. Nishiuchi, N. Akahira, T. Ohta, S. Nakamura, and T. Yamashita, J. Appl. Phys., 54, 5376 (1983) https://doi.org/10.1063/1.332716
  14. H. Y. Lee, S. J. Cho, and G. Y. Nam, J. Appl. Phys., 97, 103111 (2005). https://doi.org/10.1063/1.1903107
  15. W. S. Rodney and R. J. Spindler, J. Opt. Soc. Am., 44, 667 (1954). https://doi.org/10.1364/JOSA.44.000667