DOI QR코드

DOI QR Code

Improvement of Color Purity Using Hole Blocking Layer in Hybrid White OLED

Hole Blocking Layer 사용에 따른 하이브리드 백색 OLED의 색순도 향상에 관한 연구

  • Kim, Nam-Kyu (Department of Nano Engineering, Dong-A University) ;
  • Shin, Hoon-Kyu (National Institute for Nanomaterials Technology, Pohang University of Science and Technology) ;
  • Kwon, Young-Soo (Department of Nano Engineering, Dong-A University)
  • 김남규 (동아대학교 나노공학과) ;
  • 신훈규 (포항공과대학교 나노융합기술원) ;
  • 권영수 (동아대학교 나노공학과)
  • Received : 2014.07.31
  • Accepted : 2014.11.04
  • Published : 2014.12.01

Abstract

Novel materials of $Zn(HPB)_2$ and Ir-complexes were respectively synthesized as blue or red emitting material. White Organic Light Emitting Diodes (OLED) were fabricated by using $Zn(HPB)_2$ for a blue emitting layer, Ir-complexes for a red emitting layer and $Alq_3$ for a green emitting layer. White OLED was fabricated by using double emitting layers of $Zn(HPB)_2$ and $Alq_3:Ir$-complexes, and hole blocking layer of BCP. We also varied the thickness of BCP. When the thickness of BCP layer was 5 nm, white emission was achieved. We obtained a maximum luminance of $3,500cd/m^2$. The CIE coordinates was (0.375, 0.331). From this study, we could propose that the hybrid structure is efficient in lighting application of white OLED by improvement of color purity.

Keywords

References

  1. J. Kido, W. Ikeda, M. Kimura, and K. Nagai, Jpn. J. Appl. Phys., 35, L394 (1996). https://doi.org/10.1143/JJAP.35.L394
  2. S. Tokito, K. Noda, H. Tanaka, Y. Taga, and T. Tsutsui, Synth. Met., 111, 393 (2000).
  3. J. Thompson, V. Maiorano, S. Carallo, E. Perrone, A. Biasco, R. Cingolani, A. Croce, A. Daneu, and R. I. R. Blyth, Synth .Met., 152, 69 (2005). https://doi.org/10.1016/j.synthmet.2005.07.146
  4. D. E. Kim, W. S. Kim, B. S. Kim, B. J. Lee, and Y. S. Kwon, Colloids Surf. A, 313, 320 (2008).
  5. F. J. Zhu, Y. L. Hua, S. G. Yin, J. C. Deng, K. W. Wu, X. Niu, X.M. Wu, and M. C. Petty, J. Lumin., 122, 717 (2007).
  6. Y. K. Jang, D. E. Kim, W. S. Kim, O. K. Kwon, B. J. Lee, and Y. S. Kwon, Jpn. J. Appl. Phys., 45, 3725 (2006). https://doi.org/10.1143/JJAP.45.3725
  7. P. E. Burrows and S. R. Forrest, Appl. Phys. Lett., 64, 2285 (1993).
  8. W. Brutting, S. Berleb, and A. G. Muckl, Synth. Met., 122, 99 (2001). https://doi.org/10.1016/S0379-6779(00)01342-4
  9. S. C. Jain, A. K. Kapoor, W. Geens, J. Poortmans, R. Mertens, and M. Willander, J. Appl. Phys., 92, 3579 (2002). https://doi.org/10.1063/1.1503857
  10. J. S. Kim, M. Granstrom, R. H. Friend, N. Johansson, W. R. Salaneck, R. Daik, W. J. Feast, and F. Cacial, J. Appl. Phys., 84, 6859 (1998). https://doi.org/10.1063/1.368981
  11. X. Y. Zheng, W. Q. Zhu, Y. Z. Wu, X. Y. Jiang, R. G. Sun, Z. I. Zhang, and S. H. Xu, Displays, 24, 121 (2003). https://doi.org/10.1016/j.displa.2003.09.004
  12. C. W. Ko and Y. T. Tao, Appl. Phys. Lett., 79, 4234 (2001). https://doi.org/10.1063/1.1425454
  13. J. S. Kim, M. Granstrom, R. H. Friend, N. Johansson, W. R. Salaneck, R. Daik, W. J. Feast, and F. Cacial, J. Appl. Phys., 84, 6859 (1998). https://doi.org/10.1063/1.368981
  14. H. Kanno, K. Ishikawa, Y. Nishio, A. Endo, C. Adachi, and K. Shibata, Appl. Phys. Lett., 90, 123509 (2007). https://doi.org/10.1063/1.2643908
  15. D. E. Kim, W. S. Kim, B. S. Kim, B. J. Lee, and Y. S. Kwon, Thin Solid Films, 516, 3637 (2008). https://doi.org/10.1016/j.tsf.2007.08.103
  16. X. T. Tao, H. Suzuki, T. Wada, H. Sasabe, and S. Miyata, Appl. Phys. Lett., 75, 1955 (1999). https://doi.org/10.1063/1.124883
  17. M. M. Mandoc, B. de Boer, and P.W.M. Blom, Phys. Rev. B, 73, 155205 (2006). https://doi.org/10.1103/PhysRevB.73.155205
  18. C. F. Qiu, L. D. Wang, H. Y. Chen, M. Wong, and H. S. Kwok, Appl. Phys. Lett., 79, 2276 (2001). https://doi.org/10.1063/1.1407300
  19. T. Nakamura, N. Tsutsumi, N. Juni, and H. Fujii, J. Appl. Phys. 97, 054505 (2005). https://doi.org/10.1063/1.1858875
  20. C. W. Tang, S. A. VanSlyke, and C. H. Chen, J. Appl. Phys., 65, 3610 (1989). https://doi.org/10.1063/1.343409
  21. S. C. Jain, A. K. Kapoor, W. Geens, J. Poortmans, R. Mertens, and M. Willander, J. Appl. Phys., 92, 3579 (2002). https://doi.org/10.1063/1.1503857
  22. M. mazzeo, D. Pisignano, Laura Favartto, G. Sotgiu, G. Barbarella, R. Cingolani, and G. Gigli, Synth. Met., 139, 657 (2003). https://doi.org/10.1016/S0379-6779(03)00243-1
  23. P.W.M. Blom, M.J.M. de Jong, and M. G. van Munster, Phys. Rev. B, 55, R656 (1997). https://doi.org/10.1103/PhysRevB.55.R656
  24. N. C. Greenham, I.D.W. Samuel, G. R. Hayes, R. T. Phillips, Y.A.R.R. Kessener, S. C. Moratti, A. B. Holmes, and R. H. Friend, Chem. Phys. Lett., 241, 89 (1995). https://doi.org/10.1016/0009-2614(95)00584-Q
  25. Z. Yang, B. Hu, and F. E. Karasz, J. Macromol. Sci., Pure. Appl. Chem., A35, 233 (1998).
  26. S. Reineke, F. Lindner, G. Schwartz, N. Seidler, K. Walzer, B. Lussem, and K. Leo, Nature, 459, 234 (2009). https://doi.org/10.1038/nature08003