DOI QR코드

DOI QR Code

Investigation of the Annealing Time Effects on the Properties of Sputtered ZnO:Al Thin Films

  • Kim, Deok Kyu (Advanced Development Team, Samsung Electronics Co. Ltd.) ;
  • Kim, Hong Bae (Department of Semiconductor Engineering, Cheongju University)
  • Received : 2014.11.03
  • Accepted : 2014.11.30
  • Published : 2014.11.30

Abstract

ZnO:Al transparent conductive films were deposited on glass substrates by RF magnetron sputtering technique and annealed by rapid thermal annealing system. The influence of annealing time on the structural, electrical, and optical properties of ZnO:Al thin films was investigated by atomic force microscopy, X-ray diffraction, Hall method and optical transmission spectroscopy. As the annealing time increases from 0 to 5 min, the crystallinity is improved, the root main square surface roughness is decreased and the sheet resistance is decreased. The lowest sheet resistance of ZnO:Al thin film is 90 ohm/sq. The reduction of sheet resistance is caused by increasing carrier concentration due to substituent Al ion. All films are transparent up to 80% in the visible wavelength range and the adsorption edge is a blue-shift due to Burstein-Moss effect with increasing annealing time.

Keywords

References

  1. X. Jiang, F. L. Wong, M. K. Fung, and S. T. Lee, Appl. Phys. Lett. 83, 7875 (2003).
  2. J. Muller, B. Rech, J. Springer, and M. Vanecek, Sol. Energy 77, 917 (2004). https://doi.org/10.1016/j.solener.2004.03.015
  3. T. Minami, S. Takata, and T. Kakumu, J. Vac. Sci. Technol. A 14, 1689 (1996). https://doi.org/10.1116/1.580320
  4. J. Mass, P. Bhattacharya, R. S. Katiyar, Mater. Sci. Eng. B 103, 9 (2003). https://doi.org/10.1016/S0921-5107(03)00127-2
  5. A. Mosbah, and M. S. Aida, J. Alloys Compd. 515, 149 (2012). https://doi.org/10.1016/j.jallcom.2011.11.113
  6. H. Kumarakuru, D. Cherns, and G. M. Fuge, Surf. Coat. Technol. 205, 5083 (2011). https://doi.org/10.1016/j.surfcoat.2011.05.011
  7. P. Baneerjee, W. J. Lee, K. R. Bae, S. B. Lee, and G. W. Rubloff, J. Appl. Phys. 108, 043504 (2010). https://doi.org/10.1063/1.3466987
  8. Z. Zhang, C. Bao, W. Yao, S. Ma, L. Zhang, and S. Hou, Superlattices Microstruct. 49, 644 (2011). https://doi.org/10.1016/j.spmi.2011.04.002
  9. B. Y. Oh, M. C. Jeong, D. S. Kim, W. Lee, J. M. Myoung, J. Cryst. Growth 281, 475 (2005). https://doi.org/10.1016/j.jcrysgro.2005.04.045
  10. W. Yang, Z. Wu, Z. Liu, A. Pang, Y. L. Tu, Z. C. Feng, Thin Solid Films 519, 31 (2010). https://doi.org/10.1016/j.tsf.2010.07.048
  11. J. H. Oha, K. K. Kim, and T. Y. Seong, Appl. Surf. Sci. 257, 2731 (2011). https://doi.org/10.1016/j.apsusc.2010.10.053
  12. C. Guillen, and J. Herrero, Surf. Coat. Technol. 201, 309 (2006). https://doi.org/10.1016/j.surfcoat.2005.11.114
  13. G. Haake, J. Appl. Phys. 47, 4086 (1976). https://doi.org/10.1063/1.323240