DOI QR코드

DOI QR Code

Monitoring Ion Energy Distribution in Capacitively Coupled Plasmas Using Non-invasive Radio-Frequency Voltage Measurements

  • Choi, Myung-Sun (Department of Energy Systems Engineering, Seoul National University) ;
  • Lee, Seok-Hwan (Department of Energy Systems Engineering, Seoul National University) ;
  • Jang, Yunchang (Department of Energy Systems Engineering, Seoul National University) ;
  • Ryu, Sangwon (Department of Energy Systems Engineering, Seoul National University) ;
  • Kim, Gon-Ho (Department of Energy Systems Engineering, Seoul National University)
  • Received : 2014.10.13
  • Accepted : 2014.11.30
  • Published : 2014.11.30

Abstract

A non-invasive method for ion energy distribution measurement at a RF biased surface is proposed for monitoring the property of ion bombardments in capacitively coupled plasma sources. To obtain the ion energy distribution, the measured electrode voltage is analyzed based on the circuit model which is developed with the linearized sheath capacitance on the assumption that the RF driven sheath behaves like a simple diode for a bias power whose frequency is much lower than the ion plasma frequency. The method is verified by comparing the ion energy distribution function obtained from the proposed model with the experimental result taken from the ion energy analyzer in a dual cathode capacitively coupled plasma source driven by a 100 MHz source power and a 400 kHz bias power.

Keywords

References

  1. R. Tsui, Phys. Rev. 168, 107-108 (1968). https://doi.org/10.1103/PhysRev.168.107
  2. E. Kawamura, V. Vahedi, Plasma Sources Sci. Technol. 8, R45-R64 (1999). https://doi.org/10.1088/0963-0252/8/3/202
  3. R. Farouki, S. Hamaguchi, M. Dalvie, Phys. Rev. A. 45, 5913-5929 (1992). https://doi.org/10.1103/PhysRevA.45.5913
  4. P. Benoit-Cattin, J. Appl. Phys. 39, 5723 (1968). https://doi.org/10.1063/1.1656039
  5. J.W. Coburn, J. Appl. Phys. 43, 4965 (1972). https://doi.org/10.1063/1.1661054
  6. A. Metze, D. Ernie, H. Oskam, J. Appl. Phys. 60, 3081-3087 (1986). https://doi.org/10.1063/1.337764
  7. S.-B. Wang, A. E. Wendt J. Appl. Phys. 88, 643-646 (2000). https://doi.org/10.1063/1.373715
  8. S. Rauf, J. Appl. Phys. 87, 7647-7651 (2000). https://doi.org/10.1063/1.373435
  9. A. Agarwal, M.J. Kushner, J. Vac. Sci. Technol. A Vacuum, Surfaces, Film. 23, 1440-1449 (2005). https://doi.org/10.1116/1.2013318
  10. J.S. Han, J.P. McVittie, J. Zheng, J. Vac. Sci. Technol. B Microelectron. Nanom. Struct. 13, 1893-1899 (1995). https://doi.org/10.1116/1.587831
  11. J. Hopwood, Appl. Phys. Lett., 62, 940-942 (1993). https://doi.org/10.1063/1.108526
  12. D. Gahan, S. Daniels, C. Hayden, P. Scullin, D. O'Sullivan, Y.T. Pei, and M. B. Hopkins, Plasma Sources Sci. Technol., 21, 024004 (2012). https://doi.org/10.1088/0963-0252/21/2/024004
  13. M. A. Sobolewski, Phys. Rev. E 59, 1059 (1999). https://doi.org/10.1103/PhysRevE.59.1059
  14. M. A. Sobolewski, Phys. Rev. E 62, 8540 (2000). https://doi.org/10.1103/PhysRevE.62.8540
  15. M. A. Sobolewski, J. Appl. Phys. 95, 4593 (2004). https://doi.org/10.1063/1.1687975
  16. M. A. Sobolewski, J. Vac. Sci. Technol. A: Vacuum, Surfaces, Film. 24, 1892-1905 (2006). https://doi.org/10.1116/1.2335862