DOI QR코드

DOI QR Code

Fabrication of Methanol Sensors Using Conductive Polypyrrole Nanofibers with a Core-Shell Structure

코아-셀 구조를 가지는 전도성 폴리피롤 나노섬유를 이용한 메탄올 센서 제작

  • Jun, Tae-Sun (Dep. of Bionano Engineering, Hanyang Unv.) ;
  • Lee, Sungho (Micro-nano Process R&D Department, Korea Institute of Industrial Technology) ;
  • Kim, Yong Shin (Dep. of Bionano Engineering, Hanyang Unv.)
  • 전태선 (한양대학교 바이오나노공학과) ;
  • 이성호 (한국생산기술연구원 마이크로나노공정연구그룹) ;
  • 김용신 (한양대학교 바이오나노공학과)
  • Received : 2014.10.06
  • Accepted : 2014.11.10
  • Published : 2014.11.30

Abstract

Electrically conductive polypyrrole-polyvinylpyrrolidone (PPy-PVP) nanofiber mats with a core-shell structure have been successfully fabricated by a two-step process: the formation of FeCl3-containing PVP nanofiber mat by electrospinning, and the vapor-phase polymerization (VPP) of pyrrole monomer on the mat in a sealed chamber at room temperature. Surface morphology and chemical composition of the PPy-PVP mat were characterized by SEM, EDX and FTIR analyses. The as-prepared nonwoven mat was composed of PPy-PVP nanofibers with an average diameter of 300 nm. The sheet conductivity of the nanofiber mat was measured to be approximately 0.01 S/cm by a four-point probe. We have also investigated gas-sensing properties of PPy-PVP nanofiber mat upon exposure to methanol vapor. The PPy-PVP nanofiber sensors were observed to have excellent methanol-sensing performance. The nanofiber-based core-shell nanostructure could give an opportunity to fabricate a highly sensitive and fast response sensor due to its high surfaceto-volume ratio.

Keywords

References

  1. A. G. Macdiarmid, "Synthetic metals: Anovel role for organic polymers", Angew. Chem. Int. Ed., Vol. 40, pp. 2581-2590, 2001. https://doi.org/10.1002/1521-3773(20010716)40:14<2581::AID-ANIE2581>3.0.CO;2-2
  2. M. Ates, T. Karazehir, and A. S. Sara, "Conducting polymers and their applications", Curr. Phys. Chem., Vol. 2, pp. 224-240, 2012. https://doi.org/10.2174/1877946811202030224
  3. U. Lange, N. V. Roznyatovskaya, and V. M. Mirsky, "Conducting polymers in chemical sensors and arrays", Anal. Chem. Acta., Vol. 614, No. 1, pp. 1-26, 2008. https://doi.org/10.1016/j.aca.2008.02.068
  4. T. V. Cemiskaya and O. N. Efimov, "Polypyrrole: A conducting polymer; it's synthesis, properties and applications", Russ. Chem. Rev., Vol. 66, p. 443, 1997. https://doi.org/10.1070/RC1997v066n05ABEH000261
  5. X. Lu, W. Zhang, C. Wang, T. C. Wen, and Y. Wei, "Onedimensional conducting polymer nanocomposites: synthesis, properties and applications", Prog. Polym. Sci., Vol. 36, No. 5, pp. 671-712, 2011. https://doi.org/10.1016/j.progpolymsci.2010.07.010
  6. R. Ansari, "Polypyrrole conducting electroactive polymers: synthesis and stability studies", E.-J. Chem., Vol. 3, No. 4, pp. 186-201, 2006. https://doi.org/10.1155/2006/860413
  7. K. Gurunathan, A. V. Murugan, R. Marimuthu. U. O. Mulik, and D. P. Amalnerkar, "Electrochemically synthtsised conducting polymeric materials gor applications towards technology in electronics, optoelectronics and energy storage devices", Mater. Chem. Phys., Vol. 61, pp. 173-191, 1999. https://doi.org/10.1016/S0254-0584(99)00081-4
  8. H. Goto, H. Yoneyama, F. Togashi, R. Ohta, A. Tsujimoto, E. Kita, and K. I. Ohshima, "Preparation of conducting polymers by electrochemical methods and demonstration of a polymer battery", J. Chem. Educ., Vol. 85, No. 8, p. 1067, 2008. https://doi.org/10.1021/ed085p1067
  9. K. P. Kamloth, "Chemical gas sensors based on organic semiconductor polypyyrrole", Crit. Rev. Anal. Chem., Vol. 32, No. 2, pp. 121-140, 2002. https://doi.org/10.1080/10408340290765489
  10. L. Guyard, P. Hapiot, and P. Neta, "Redox chemistry of bipyrroles: Further insights into the oxidative polymerization mechanism of pyrrole and oligopyrroles", J. Phys. Chem. B, Vol. 101, pp. 5698-5706, 1997. https://doi.org/10.1021/jp9706083
  11. T. Lawal and G. G. Wallace, "Vapour phase polymerization of conducting non-conducting polymers: A review", Talanta, Vol. 119, pp. 133-143, 2014. https://doi.org/10.1016/j.talanta.2013.10.023
  12. J. Y. Kim, D. W. Sohn, Y. Y. Sung, and E. R. Kim, "Fabrication and characterization of conductive polypyrrole thin film prepared by in situ vapor-phase polymerization", Synth. Met., Vo1. 32. No. 3, pp. 309-313, 2003.
  13. K. Kurachi, and H. Kise, "Preparation of polypyrrole/polyethylene composite films by the vapor-phase oxidative polymerization of pyrrole", Polym. J., Vol. 26, pp. 1325-1331, 1994. https://doi.org/10.1295/polymj.26.1325
  14. S. Nair, S. Natarajan, and S. H. Kim, "Fabrication of electrochemically conducting polypyrrole-poly (ethylene oxide) composite nanofibers", Macromol. Rapid Commun., Vol. 26, pp. 1599-1603, 2005. https://doi.org/10.1002/marc.200500457
  15. A. Joshi, S. A. Ganal, and S. K. Gupta, "Ammonia sensing properties of polypyrrole thin film at room temperature", Sens. Actuator B-Chem., Vol. 156, pp. 938-942, 2011. https://doi.org/10.1016/j.snb.2011.03.009
  16. L. A. Mashat, H. D. Tran, W. Wlodarski, R. B. Kaner, and K. K. Zadeh, "Polypyrrole nanofiber surface acoustic wave gas sensors", Sens. Actuator B-Chem., Vol. 134, pp. 826-831, 2008. https://doi.org/10.1016/j.snb.2008.06.030
  17. L. Jiang, H. K. Jun, Y. S. Hon, J. O. Lim, D. D. Lee, and J. S. Huh, "Sensing characteristics of polypyrrole-poly (vinyl alchol) methanol sensors prepared by in situ vapor state polymerization", Sens. Actuator B-Chem., Vol. 105, pp. 132-137, 2005. https://doi.org/10.1016/j.snb.2003.12.077